

550 Capitol St. NE Salem, OR 97301 Phone: 503-378-4040 Toll Free: 1-800-221-8035

FAX: 503-373-7806 www.oregon.gov/energy

AGENDA

Title: Buildings Working Group – Oregon Energy Strategy

Date: August 16, 2024

Objectives:

The purpose of this Working Group is to:

- Understand foundational data sources expected to inform starting point for analysis and ask clarifying questions.
- Provide expertise and feedback on key assumptions related to buildings out to 2050.
- Discuss "what if" questions to inform scenarios that can help understand trade-offs of different clean energy pathways.

Buildings Working Group Members:

Northwest Energy Efficiency Alliance (NEEA)
Portland General Electric
NW Natural
NW Natural
Oregon Housing and Community Services
DEQ Clean Air-Wood Stove Replacement Programs
PacifiCorp
DCBS Building Codes Division
Oregon Health Authority
Earth Advantage
NW Energy Coalition
The Home Performance Guild of Oregon
RDH Building Science Inc
IBEW, Local 48
Building Potential (Formerly NEEC)
Energy Trust of Oregon
Climate Solutions
Earth Advantage
Building Potential (Formerly NEEC)
DCBS Building Codes Division
Portland General Electric
Cascade Natural Gas
PAE
Gensco Inc

Agenda

Time	Topic	Who
9:00-9:10	Welcome and introductions	Blake Shelide, ODOE
9:10-9:20	Setting the stage	Stephanie Kruse, ODOE
9:20-9:35	How buildings are considered in the Oregon Energy Strategy reference scenario	Jeremy Hargreaves, Evolved Energy Research
9:35-10:15	Discussion of reference scenario data and assumptions	Stephanie Kruse & Blake Shelide, ODOE
10:15-10:50	Discussion of alternative scenarios	Jeremy Hargreaves, Evolved Energy Research
10:50-11:00	Wrap up and next steps	Blake Shelide, ODOE

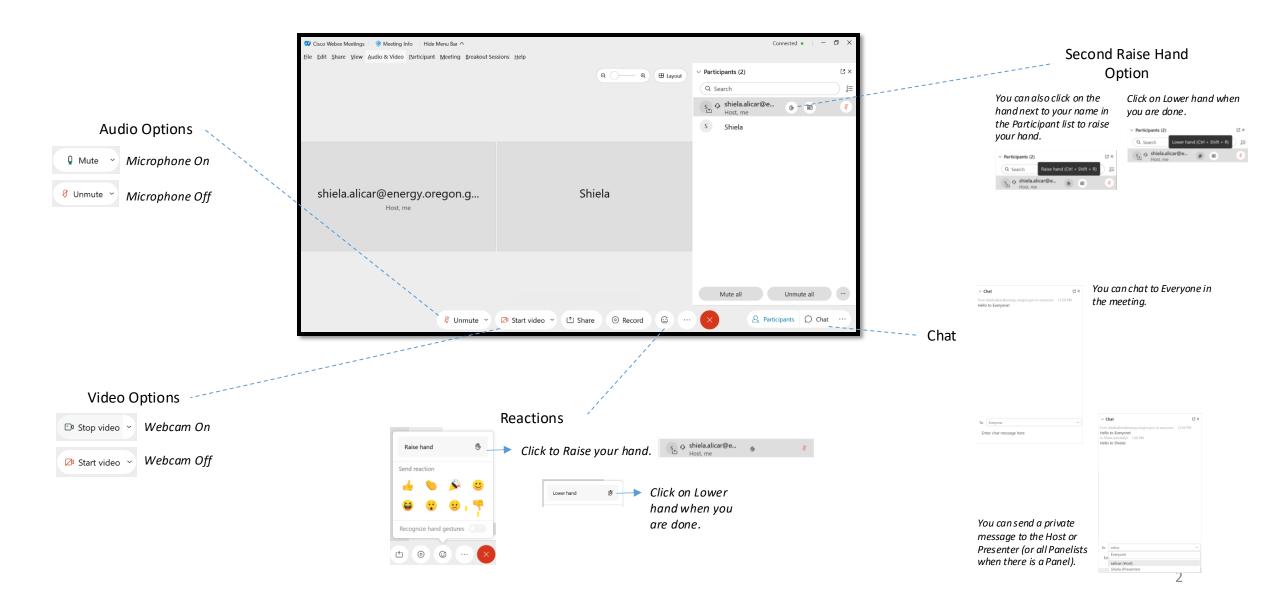
Note: ODOE will open the floor for comments and questions from observers if time permits.

Comments and questions can be submitted to: https://odoe.powerappsportals.us/en-US/energy-strategy/.

Oregon Department of ENERGY

Oregon Energy Strategy
Buildings Working Group

Stephanie Kruse and Blake Shelide August 16, 2024



USING WEBEX

PURPOSE OF THIS WORKING GROUP

- Understand foundational data sources expected to inform starting point for analysis and ask clarifying questions.
- Provide expertise and feedback on key assumptions related to buildings out to 2050.
- Discuss "what if" questions to inform scenarios that can help understand trade-offs of different clean energy pathways.

Note: The focus today is on the modeling; discussion of policy recommendations will take place in early 2025.

9:00 – 9:10	Welcome and introductions	Blake Shelide, ODOE		
9:10 – 9:20	Setting the stage	Stephanie Kruse, ODOE		
9:20 – 9:35	How buildings are considered in the Oregon Energy Strategy reference scenario	Jeremy Hargreaves, Evolved Energy Research		
9:35 – 10:15	Discussion of reference scenario data and assumptions	Stephanie Kruse & Blake Shelide, ODOE		
10:15 – 2:50	Discussion of alternative scenarios	Jeremy Hargreaves, Evolved Energy Research		
2:50 – 3:00	Wrap up and Next Steps	Blake Shelide, ODOE		

Note: ODOE will open the floor for comments and questions from observers if time permits.

Comments and questions can be submitted to: https://odoe.powerappsportals.us/en-US/energy-strategy/.

WORKING GROUP ROSTER

ORGANIZATION	NAME
Northwest Energy Efficiency Alliance (NEEA)	Ryan Brown
Portland General Electric	Sarah Buchwalter
IBEW, Local 659	Nick Carpenter
NW Natural	Ian Casey
NW Natural	Kevin Duell
Oregon Housing and Community Services	Dan Elliott
DEQ Clean Air-Wood Stove Replacement Programs	Farrah Fatemi
DCBS Building Codes Division	Mark Heizer
Oregon Health Authority	Sam Henstell
Earth Advantage	David Heslam
NW Energy Coalition	Fred Heutte
The Home Performance Guild of Oregon	Dirk Larson

ORGANIZATION	NAME
RDH Building Science Inc	Casey McDonald
IBEW, Local 48	Marshall McGrady
Building Potential (Formerly NEEC)	Kerry Meade
Energy Trust of Oregon	Spencer Moersfelder
Climate Solutions	Claire Prihoda
Earth Advantage	Maddy Salzman
Building Potential (Formerly NEEC)	Melissa Sokolowsky
DCBS Building Codes Division	Kelly Thomas
Portland General Electric	Matt Tidwell
Cascade Natural Gas	Elizabeth Torske
PAE	Forest Tanier-Gesner
Gensco Inc	Bret van den Heuvel

PROJECT TEAM & WORKING GROUP LEADS

ODOE Project Leads

- Alan Zelenka Assistant Director for Planning and Innovation
- Jessica Reichers Manager, Policy & Innovation
- Edith Bayer Oregon Energy Strategy Team Lead

Buildings Working Group Team Leads

- Stephanie Kruse Facilities Engineer: Electricity Resource Mix, Rural and Agricultural Energy Audits, Schools
- Blake Shelide Codes and Standards Manager: Building Codes, Appliance and Equipment Standards, Building Performance Standards Program
- Mary Kopriva Economist

CLEAN ENERGY TRANSITION INSTITUTE TEAM

Project Management

- Overall Project Manager: Eileen V. Quigley, CETI
- Technical Project Manager: Ruby Moore-Bloom, CETI

Technical Modeling

- Technical Project Lead: Jeremy Hargreaves, Evolved
- Technical Advisors: Elaine Hart, Moment Energy Insights; Amy Wagner, Evolved
- Technical Project Support: Ryan Jones and Gabe Kwok, Evolved
- Health Impacts Lead: Jamil Farbes, Evolved

Equity Support

- Equity Advisor: Angela Long, Rockcress Consulting
- Equity Advisory & Data Analyst: Mariah Caballero, CETI

PLEASE TELL US ABOUT YOURSELF IN THE GROUP CHAT

- Name
- Affiliation
- Geographic location you represent
- Icebreaker question!
 - What older (10+ years) song is in heavy rotation in your playlist (or that you just get really excited if it comes on the radio)?

Setting the Stage

WHERE WE ARE IN THE PROCESS

Present draft policy recommendations → Public written feedback

- Listening sessions
- Working Groups
- Advisory Group
- Inter-Agency Group
- Tribal Consultation
- EJ & Equity Engagement
- Webinars (bookends)

Technical approach

(July – Dec 2024)

Policy recommendations

(winter/spring 2025)

- Listening sessions
- Working Groups (may be different)
- Advisory Group
- Inter-Agency Group
- Tribal Consultation
- EJ & Equity Engagement
- Webinars (bookends)

- Drafting
- Present draft report → public written feedback
- Finalize
- Publication & outreach

Final Report

(summer/fall 2025 – due by Nov 1, 2025)

Present draft model results → Public written feedback

SCOPE OF THE ENERGY STRATEGY

In identifying pathways to meeting the state's energy policy objectives, the state energy strategy must take into account, at a minimum:

- State Energy demand and trends
- Energy resources and tech choices considering costs, EE, feasibility & availability
- Existing & potential incentives to support EE
- Energy generation, transmission, distribution infrastructure
- Emerging tech & investment opportunities
- Environmental justice

- Community benefits
- Land use considerations
- Energy burden & affordability
- Econ and employment impacts
- Energy security and impacts of broader markets
- Energy resilience
- Community energy resilience

ENERGY POLICY OBJECTIVES

Economy-wide

- EO 20-04
- 80% GHG reduction by 2050

Electricity (IOUs*)

- HB 2021
- 100% clean by 2040

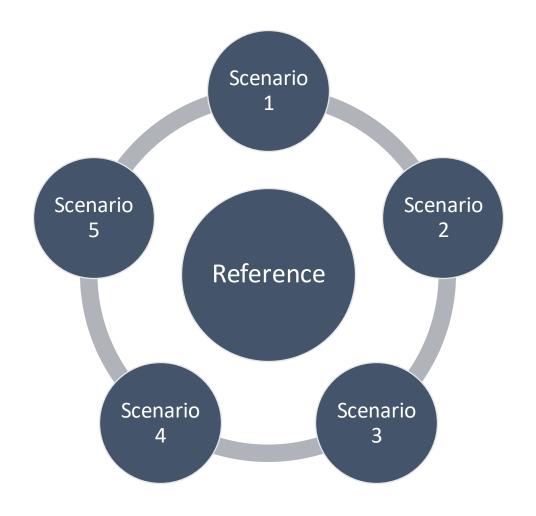
*HB 2021 applies to the large IOUs, PacifiCorp and Portland General Electric Company, as well as to electricity service suppliers.

Natural gas, liquid fuels, propane

- Climate Protection Program
- 90% GHG reduction by 2050

Policies driving and shaping compliance pathways:

Clean Fuels Program, Advanced Clean Cars II, Advanced Clean Trucks, Building Codes, Appliance Standards, and many more....



SUMMARY OF MODELING APPROACH

Reference: Combination of a set of reasonable assumptions demonstrating alignment with state energy goals to 2050

Scenarios 1-5: Test alternative pathways to uncover differences and trade-offs with reference pathway

(What if there is more or less transmission? What if heat pump or electric vehicle adoption is slower than expected? etc.)

How buildings are considered in the Oregon Energy Strategy reference scenario

Oregon Energy Strategy Technical Consulting

High Level Description of Modeling Approach

- Model calculates the energy needed to power OR's economy, and the least-cost way to provide that energy under clean electricity and emissions goals
- Key result: Emissions reductions by measure

Model of OR's economy

Residential
Commercial
Industrial
Transportation

1: Model calculates energy needs

OR's energy needs

Electricity Liquid Fuels Gaseous Fuels

2: Model calculates energy supply

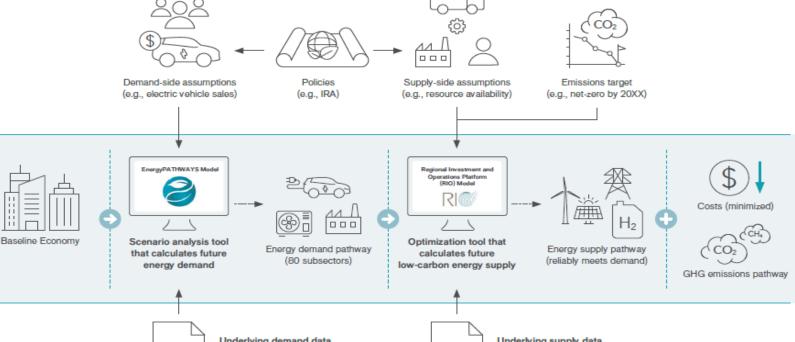
Constrained by clean energy goals

Supply energy reliably at least cost

Generation
Transmission
Storage
Fuel supply
Carbon

Economy-Wide Energy Modeling

Scenario Assumptions


Model incorporates assumptions about demand-side uses, clean energy policies and incentives, and supply-side resources.

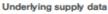
Evolved Energy Research uses two

models to calculate the least-cost

emission target: Energy Pathways for demand and RIO for supply.

way to provide energy under an

Best Available Data

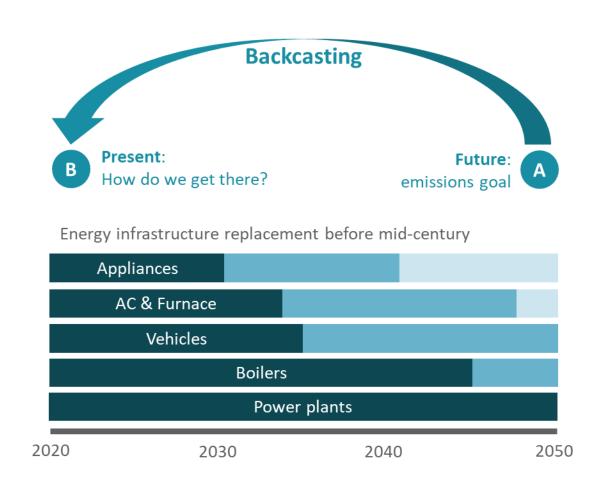

Energy Modeling

Model incorporates relevant and up-to-date energy data from reputable sources, substituted with local data where possible.

Underlying demand data

- · Economic subsectors
- · Demand technology characteristics
- · Capital, operating, and installation costs
- · Hourly demand shapes
- · Current technology stocks
- · Energy service demands
- Fuels efficiencies (electricity, pipeline gas, diesel, etc.)
- Demand drivers (e.g., population)
- Geographies

- · Existing energy infrastructure
- · Existing infratructure scheduled retirement
- · Scheduled resource additions already committed
- · Energy production and conversion infrastructure characteristics
- · Energy transport, storage, and delivery options
- · Capital, operating and maintenance, and installation costs
- · Resource potentials
- · Renewable resource production shapes
- · Commodity costs and delivery costs
- · Gas global warming potentials
- · Land use
- Geographies



Forecasting vs. Backcasting

- Forecasting: project changes based on expected customer behavior given incentives/technology
 - e.g result of current policy
- Backcasting: start with an end-point and work backwards to infer customer adoption over time
 - What is the best path to be on?
 - Target for future policymaking: Where is current policy falling short?
 - All options available in the long term

Backcasting Discussion

- Forecasting vs. backcasting efficiency and electrification can result in different long-term load forecasts
 - Forecast 'reference' case with 0.2% load growth
 - Back-cast 'low carbon' scenarios see periods with 2-3% load growth
 - Early 2020s may be seen, in retrospect, as a period of maximum load growth uncertainty
- Efficiency and electrification required for feasible low-emissions pathway
 - Timing of electrification has more uncertainty than its long-term scale

End-Use Sectors Modeled

- Approximately 80 demand sub-sectors represented
- > The major energy consuming sub-sectors are listed below:

Key energy-consuming subsectors:

Residential Sector

- Air-conditioning
- Space heating
- Water heating
- Lighting
- Cooking
- Dishwashing
- Freezing
- Refrigeration
- Clothes washing
- Clothes drying

Commercial Sector

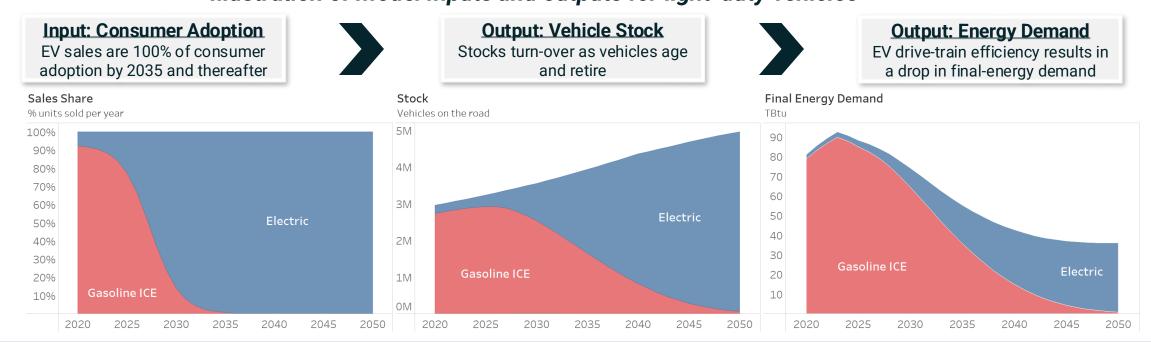
- Air-conditioning
- Space heating
- Water heating
- Ventilation
- Lighting
- Cooking
- Refrigeration

Industrial Sector

- Boilers
- Process heat
- Space heating
- Curing
- Drying
- Machine drives
- Additional subsectors (e.g., machinery, cement)

Transportation Sector

- Light-duty autos
- Light-duty trucks
- Medium-duty vehicles
- Heavy-duty vehicles
- Transit buses
- Aviation
- Marine vessels


Source: CETI, NWDDP, 2019

Demand-Side Modeling

- Scenario-based, bottom-up energy model (not optimization-based)
- Characterizes rollover of stock over time
- Simulates the change in total energy demand and load shape for every end use Illustration of model inputs and outputs for light-duty vehicles

Reference scenario data and assumptions

KEY DATA SOURCES FOR EXISTING CONDITIONS

Model Input	Data Source for Existing Conditions			
Space Heating	Residential: NEEA Residential Building Stock Assessment & Hom	ing Stock Assessment & Home Energy Score Data*		
	Commercial: NEEA Commercial Building Stock Assessment			
Water Heating	Residential: NEEA Residential Building Stock Assessment & Home Energy Score Data*			
	Commercial: NEEA Commercial Building Stock Assessment			
Building Shells	Residential: NEEA Residential Building Stock Assessment & Home Energy Score Data*			
	Commercial: NEEA Commercial Building Stock Assessment			
Technology Stock	Residential: EIA Residential Energy Consumption Survey	Potentially supplemented by local/regional		
Replacement	Commercial: EIA Annual Energy Outlook	data (still in discovery)		
Cooking & Other Appliances	ner Appliances Residential: NEEA Residential Building Stock Assessment			
	Commercial: NEEA Commercial Building Stock Assessment			
Lighting	Residential: NEEA Residential Building Stock Assessment			
	Commercial: NEEA Commercial Building Stock Assessment			

Notes: EIA stands for Energy Information Administration; NEEA stands for Northwest Energy Efficiency Alliance
*Oregon's Home Energy Score data comes from Earth Advantage

STARTING POINT FOR FUTURE CONDITIONS

Model Input	Starting Point for Future Conditions Informed by Policy and Past Studies
Space Heating	Assume existing policies play out. Residential: 65% heat pump sales by 2030, 90% by 2040 (DEQ MOU) Gas space heating efficiency increases by vintage as technology improves and standards become tighter Option for hybrid or dual gas/electric heat pump systems; differentiated by climate zone
Water Heating	Assume existing policies play out. Residential: 65% heat pump sales by 2030, 90% by 2040 (DEQ MOU) USDOE standard effective 2029 requiring new electric consumer water heating be done via HPWH
	Assume existing policies play out. Commercial: Small commercial is similar to residential, impacted by same HPWH standards by USDOE. Large commercial very small percentage heat pump in the near/mid term.
Building Shells	Weatherize 95% of existing commercial and residential home envelopes by 2040 (suggested starting point based on Oregon Climate Action Commission Analysis*) to achieve 10-20% reduction in energy use by 2040 (USDOE)
Technology Stock Replacement	No requirement for adoption of high efficiency gas appliances
Cooking & Other Appliances	100% sales of new appliances are electric by 2035 (suggested starting point based on Oregon Climate Action Commission Analysis*)
Lighting	100% LED sales by 2025 (HB2531)

What should the model assume for residential and commercial building adoption of heat pumps?

Starting point:

DEQ MOU (website)

- Residential: 65% heat pump sales by 2030; 90% by 2040
- Commercial: ??

What should the model assume for residential and commercial building water heating?

Starting points:

DEQ MOU (website). USDOE Standard (Announcement)

- Residential
 - 65% heat pump sales by 2030, 90% by 2040?
 - USDOE standard effective 2029 requiring electric consumer water heating be done via heat pump water heaters?
- Commercial: Small commercial is similar to residential, impacted by same heat pump water heaters standards by USDOE. Large commercial very small percentage heat pump in the near/mid term.

What should the model assume about percent reduction in service demand for heating and cooling?

Starting point:

Oregon Climate Action Roadmap to 2030 (report)

- Weatherize 95% of existing commercial and residential home envelopes by 2040
- U.S. Department of Energy (article)
- to achieve 10-20% reduction in energy use by 2040?

Do the assumptions around cooking, other appliances, and lighting seem reasonable?

Starting point:

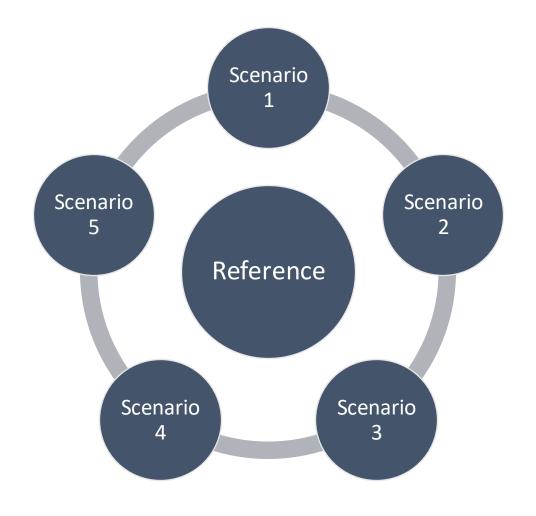
Oregon Climate Action Roadmap to 2030 (report)

• 100% sales of new appliances are electric by 2035

HB 2531 (bill)

• 100% LED sales by 2025

What if...?



SUMMARY OF MODELING APPROACH

Reference: Combination of a set of reasonable assumptions demonstrating alignment with state energy goals to 2050

Scenarios 1-5: Test alternative pathways to uncover differences and trade-offs with reference pathway

(What if there is more or less transmission? What if heat pump or electric vehicle adoption is slower than expected? etc.)

Scenario Examples From WA State Energy Strategy

Scenario Assumptions	Reference (R)	Electrification (E)	Transport Fuels (TF)	Gas in Buildings (GB)	Constrained Resources (CR)	Behavior Change (BC)
Clean Electricity Policy		CETA: Coal retirements 2025; 100% carbon neutral 2030 (with alternative compliance); 100% RE 2045				
Economy-Wide GHG Policy	None	Reduction below 1990: 45% by 2030; 70% by 2040; 95% and net zero by 2050				
Buildings: Electrification	AEO	Fully electrified appliance sales in most subsectors by 2050 Gas appliances replaced with new gas sales Fully electrified appliance sectors by 2				
Buildings: Energy Efficiency	AEO	Sales of high efficiency tech: 100% in 2035				
Transportation: Light-Duty Vehicles	AEO	100% electric sales by 2035	75% electric sales by 2045	100% electric sales by 2035		5
Transportation: Freight Trucks	AEO	Same as GB, CR, and BC Cases	Half the electric sales/no hydrogen adoption	HDV long-haul: 25% electric, 75% hydrogen sales by 2045 HDV short-haul: 100% electric sales by 2045 MDV: 70% electric sales by 2045		s by 2045
Industry	AEO	Generic efficiency improvements over Reference of 1% a year; fuel switching measures; 75% decrease in refining and mining to reflect reduced demand			sures;	
Service Demand Reductions	LDV, 15% MDV/HD			VMT by 2050: 29% LDV, 15% MDV/HDV 15% Com, 10% Res		
Resource Availability	NREL resource potential; 6 GW of additional transmission potential per path; SMRs permitted Washington: No net TX			Washington: No new TX	Same as R, E, TF, and GB Cases	

Guided Discussion on Alternative Scenarios/Levers

What if the deployment of heat pumps is slower than expected and gas continues to be used in buildings?

What if Oregon sets a more ambitious economy-wide GHG target?

Wrap up and Next Steps

ADDITIONAL ENGAGEMENT

Share Written Public Comment

- Please submit comments online: <u>https://odoe.powerappsportals.us/en-US/energy-</u> strategy/
- Comment portal open through Aug. 31, 2024
- Next meeting Final Summary for all working groups: August 22, 2024, 1pm-3pm

RESOURCES:

Project page: https://www.oregon.gov/energy/Data-and-Reports/Pages/Energy-Strategy.aspx

ODOE's website: www.oregon.gov/energy

Contact us: energy.strategy@energy.Oregon.gov