

Oregon Energy Strategy

Draft Reference Scenario Key Data and Assumptions

Introduction

This document provides the draft inputs for the Reference Scenario of the Oregon Energy Strategy model. The modeling phase of the Oregon Energy Strategy involves development of a Reference Scenario and five alternative scenarios. The modeled scenarios produce different pathways to meeting Oregon's energy and climate objectives. They provide information on the effects of different energy choices and will serve as foundational information for policy discussions in Phase 2 of the Oregon Energy Strategy process. These discussions are where policy recommendations will be developed. The final Oregon Energy Strategy will be submitted to the Governor and Legislature by November 1, 2025.

The model must solve to meet Oregon's anchor climate and clean energy goals: Executive Order 20-04 (80 percent economy-wide reduction in greenhouse gas emissions by 2050); HB 2021 (100 percent clean electricity for the state's largest investor-owned electric utilities and Electricity Service Suppliers), and the Climate Protection Program (90 percent reduction in greenhouse gas emissions from fuels by 2050). This is a requirement of HB 3630, which directs ODOE to develop the energy strategy and identify pathways to achieving the state's energy policy objectives.

These goals are ambitious, and there are many uncertainties surrounding what combination of technologies and measures will allow Oregon to meet its clean energy and climate goals over time and out to 2050. What is relatively clear based on a range of studies ODOE has evaluated is that: (1) aggressive energy efficiency and electrification are key pillars of cost-effective decarbonization; (2) we have a suite of diverse technologies to choose from to decarbonize the electricity sector; and (3) clean fuels will play a key role.

The modeling exercise requires well-informed, data-driven judgment calls on many of the assumptions relating to energy efficiency and electrification. This is because the transition to economy-wide decarbonization by mid-century requires a pace and scale that is much greater than past trends. And we are still working to understand the combination of consumer behaviors, market forces, and policy supports necessary to accomplish our goals. In order to ensure the Reference Scenario is built on the best available data and aggressive but achievable assumptions, ODOE has collaborated with industry and community experts to inform the modeling inputs. Using that feedback, ODOE and its technical contractor CETI developed a draft Reference Scenario inputs list. The table below represents key data and assumptions that inform how the model will create the Reference Scenario.

¹ 2022 Biennial Energy Report. Charting a Course for Oregon's Energy Future.

How the Model Works

At the highest level, the model uses data on the existing state of energy production and consumption and combines this with forecasts on population growth, load growth, technology evolution, and weather patterns to assess future statewide energy demand. The model then determines the supply of energy resources across the entire energy sector to meet that future demand, considering reliability and cost.ⁱⁱ

For the Oregon Energy Strategy, the Reference Scenario is informed by Oregon's energy consumption across its state-wide economy (residential, commercial, industrial, agricultural, fuel, and transportation sectors). To determine energy demand, it looks at energy-consuming technologies across 80 different sub-sectors (space heating, cooking, cars and trucks, and many others), and makes assumptions about how these technologies change over time, including improvements in energy efficiency, when these technologies are expected to turn over, and what they will be replaced with when they reach the end of their useful life.

The Reference Scenario also considers factors like weather, population growth, and industrial load growth (including from industrial data centers and chip manufacturing) to account for how energy demand is changing over time. Through this process, the model comes up with a picture of Oregon's energy needs every 5 years, from now to 2050.

Once we have a picture of how much energy we will need over time, the model searches for the most affordable mix of resources to meet demand across all energy consuming sectors while meeting our key climate and energy goals and maintaining reliability. It draws on everything from utility-scale resources to smaller-scale and distributed energy resources to do this. The model also considers the availability of energy supply infrastructure (i.e., gas pipes and electricity wires) to deliver that energy to customers.

How Model Results are Used

Model scenarios do not predict the future, rather they provide insights into pathways that meet our clean energy goals by considering differences in costs, energy efficiency, feasibility, and availability. The Reference Scenario will be compared against alternative scenarios that produce different energy pathways that are used to explore "What if?" questions. For example: What if transmission development is further delayed? What if we do not achieve as much electrification as in the Reference Scenario and instead rely more on clean fuels? What does this mean for overall system costs? What does it mean for the mix of resources we'd need to meet our clean energy goals? And most importantly: what do we learn from this exercise on the technologies and measures that are most likely to deliver a lowest-cost, highest-benefits energy transition for our state? The information we gather will provide a basis for analysis and discussion around

[&]quot; 294abc c5f79e16ca7a470b8168e1bbe7d98c7f.pdf (evolved.energy)

The model can incorporate some non-energy constraints, such as land use protections. However, much of the analysis on non-energy costs and benefits will happen when we are evaluating the results of the modeling. ODOE will be working with our consultant to evaluate the effects of different scenarios on equity, environmental justice, air quality and public health, and employment.

what policies are needed to achieve our energy objectives while maintaining a resilient and affordable energy system — and create a more equitable energy future for Oregon.

The following are key data and assumptions for the Reference Scenario of the Oregon Energy Strategy. ODOE is accepting comments on these inputs until **5 p.m. on September 4, 2024.**

Note: **Bolded text** indicates points of discussion in working group meetings.

Key Assumptions for the Reference Scenario

Key Demand-Side Assumptions (Buildings, Industry, Transportation)

1. Buildings

1.1 Buildings: Data sources for stocks

Residential Space	Northeast Energy Efficiency Alliance (NEEA) Residential Building Stock
Heating	Assessment & Home Energy Score Data*
Commercial Space	NEEA Commercial Building Stock Assessment
Heating	
Residential Water	NEEA Residential Building Stock Assessment & Home Energy Score
Heating	Data*
Commercial Water	NEEA Commercial Building Stock Assessment
Heating	
Residential Building	NEEA Residential Building Stock Assessment & Home Energy Score
Shells	Data*
Commercial	NEEA Commercial Building Stock Assessment
Building Shells	
Residential	Energy Information Administration (EIA) Residential Energy
Technology Stock	Consumption Survey, potentially supplemented by local/regional data
Replacement	(still in discovery)
Commercial	EIA Annual Energy Outlook, potentially supplemented by
Technology Stock	local/regional data (still in discovery)
Replacement	
Residential Cooking	NEEA Residential Building Stock Assessment
& Other Appliances	
Commercial	NEEA Commercial Building Stock Assessment
Cooking & Other	
Appliances	
Residential Lighting	NEEA Residential Building Stock Assessment
Commercial	NEEA Commercial Building Stock Assessment
Lighting	

^{*}Oregon's Home Energy Score data comes from Earth Advantage

1.2 Buildings: Key Assumptions

Residential Space	Assume existing policies play out for all space heating technologies
Heating	Electric heat pump sales 95% of overall sales by 2040
Commercial Space Heating	Weighted average of large and small commercial space heating loads, with the following framing: - Small commercial: follow residential - Large commercial: electric heat pumps 75% of overall sales by 2045
Residential Water Heating	Incorporate Federal Energy Conservation Standards for Consumer Water Heaters (from May 6, 2029) Electric heat pump sales rising to 95% of overall sales by 2045
Commercial Water Heating	Weighted average of large and small commercial water heating loads, with the following framing: - Small commercial: follow residential - Large commercial: 25% of all new sales are electric heat pumps by 2035 and 90% by 2045
Cooking	95% sales of new appliances are electric by 2035
Technology stock replacement	Dual gas/electric heat pump systems, differentiated by climate zone, compete with other electric technologies in line with sales shares above
Building shells	Weatherize 80% of existing commercial and residential home envelopes by 2040 and 95% by 2050. Weatherization measures assumed to achieve a 10% reduction in overall building energy use on average.
Lighting	100% LED sales by 2025 (HB2531)
Hybrid Boilers	Model can invest in dual fuel electric and gas boilers as well as hydrogen boilers

2. Industry – Key Assumptions

Industrial Processes	1% process efficiency improvements per year in all sectors
	Fuel switching measures from fuels to electricity
Electrification	100% of machine drives by 2035
	100% of heat by 2050, including in Oregon's largest industrials such
	as computer and electronics products
	50% of integrated steam production, and 80% of integrated steam
	production in food manufacturing, by 2045
	100% of refrigeration by 2040
	90% of industrial HVAC loads across industrial subsectors
	80% of industrial vehicles including in agriculture by 2050

Switch to Hydrogen	50% of heat in bulk chemicals (not a large industry in OR) 20% of construction energy demand 20% of industrial vehicles by 2050
Cement	Cement process is optimized in the model, including retrofits and new build rotary kilns to include direct separation, oxy-combustion, biomass fuel, and CCS (not a large sector in Oregon)
Thermal Energy Storage	Economic adoption modeled in industrial sector

3. Transportation

3.1 Transportation: Data sources for stocks

Light duty vehicle	OR Dept. of Transportation – Driver & Motor Vehicle division (DMV)
(LDV)current stocks	Data
Medium- and	OR Dept. of Transportation – Combination of Commerce and
heavy-duty vehicle	Compliance Division (CCD) and DMV data (depending on vehicle
(MHDV) current	weight) *Note: propose to use Environmental Protection Agency's
stocks	(EPA's) Motor Vehicle Emission Simulator (MOVES) model if cannot
	obtain CCD data
Transit Buses	National Transit Database / EPA MOVES
current stocks	
School Buses	OR Dept. of Transportation – DMV Data
current stocks	
Fuels current	OR Dept. of Environmental Quality Clean Fuels Program Data
Vehicle Miles	Dept. of Environmental Quality / EPA MOVES (data comes from
Traveled (VMT)	Highway Performance Monitoring System)
current	
Fuel Economy	EPA MOVES, Historical average fuel economy by vintage and vehicle
current	type
LDV sales shares	Advanced Clean Cars I / Advanced Clean Cars II
	Internation Council on Clean Transportation (ICCT) forecasts based on
	IRA incentives
MHDV sales shares	Advanced Clean Trucks through 2035
	ICCT forecasts based on IRA incentives

3.2 Transportation: Key Assumptions

	Post 2035: 100% zero emission vehicle (ZEV) sales by 2040 for Class
•	2b-8 vehicles (excluding buses)
	For long haul: 75% battery electric vehicles (BEVs)/25% hydrogen
	fuel cell vehicles (FCEVs)
	All other classes 100% electric

Transit Buses future	100% ZEV sales by 2036 (75% BEV / 25% FCEV by 2040)
School Buses future	100%BEV sales by 2036 (100% electric)
Rail future	20% electric, 70% hydrogen by 2050 (logistic growth starting in 2030)
Maritime Shipping	Domestic: 10% electric, 20% H2, 50% ammonia by 2050
future	International: 20% H2, 60% ammonia by 2050
Vehicle Fuels future	Clean Fuels Program + Portland's Renewable Fuel Standard
Vehicle Lifetimes	15 years
Fuel economy:	EPA SAFE 2022-2026, constant after 2026
Light duty cars and	
trucks	
Fuel economy:	EPA Phase 3 standards through MY 2032; Annual Energy Outlook
Medium duty &	(AEO) projection after 2032
heavy-duty vehicles	
Fuel economy:	Buses: AEO projection of fuel economy
Buses	
Fuel economy:	15-20% efficiency gain through 2050, to reflect
Aviation	International Air Transport Association (IATA) Net Zero Roadmap
VMT Assumption	20% reduction in VMT per capita by 2050
Vehicle costs	Light, Medium, and Heavy-Duty Vehicles: International Council on
	Clean Transportation Report: Analyzing the Impact of the IRA on EV
	Uptake in the U.S.
	Transit / School Buses: International Council on Clean Transportation
	Rail / Aviation / Maritime: Costs assumed to be same as fossil
	alternatives due to lack of data
Fuel costs	Annual Energy Outlook 2023 Oil and Gas Forecasts
Infrastructure costs	EV Charging: NREL Electrification Futures Study
	Hydrogen: U.S. Dept. of Energy Technical Targets for H2 Delivery
	Looking into using NREL's EVI Pro
EV Charging	NREL Electrification Futures Study
Estimates	Looking into using NREL's EVI Pro

Key Supply-Side Assumptions (Electricity, Fuels, Pipes & Wires)

4. Direct Use Fuels

Demand Side	Modeled residential, commercial, and industrial demand end use
Assumptions	using assumptions about sales shares in EnergyPATHWAYS
Supply Side	Existing natural gas utility Integrated Resource Plans (IRPs) for near-
Assumptions	term investments and operations
	Survey of peer reviewed and government agency sources of capital

	and operating costs and performance (ADP Technical Documentation 2023, p. 61)
Fuel supply and	Energy Information Administration (EIA) Annual Energy Outlook
price forecasting	NW Power and Conservation Council's Fuels Advisory Committee
	natural gas price forecast
	Department of Energy Billion Ton Study
Alternative Clean	DEQ's Climate Protection Program
Fuel Investment	
Alternative Clean	Biomass-derived fuels, hydrogen, and hydrogen-derived fuels qualify
Fuels	as clean (if green hydrogen used). Imported fuels are counted as zero
	emissions (credit for negative emissions from processes like BECCS are
	retained by producing state). Clean Fuel Standard incorporated

5. Energy Efficiency and Load Flexibility

Behind the Meter	Northwest Power and Conservation Council March 2024 rooftop solar
Photovoltaic	projections
(BTM PV)	
BTM Storage	Energy Information Administration's (EIA) June 2024 Survey: 10 MW
Adoption	assumed today
	(Note: ODOE is also calculating data from the Oregon Solar and
	Storage Rebate Program (OSSRP) to compare to EIA data. Please
	share if there is another data source ODOE should consider.)
	What should be assumed for the total amount of BTM storage by
	2050?
Flexible Load	Space heating loads can be delayed or advanced by 1 hour
Parameters	Water heating loads can be delayed or advanced by up to 2 hours
	Air conditioning can be delayed or advanced by 1 hour
	Residential vehicle charging can be delayed by up to 8 hours and
	commercial vehicle charging up to 3 hours
V2G	No V2G assumed
Data Center Load	Northwest Power and Conservation Council Pacific Northwest Power
Growth	Supply Adequacy Assessment for 2029 base case, with load
	differentiated across modeling zones
Demand Response	50% of electric appliance installations by 2050 (linear growth from
Households	2025)
participation	
	Note: ODOE is still calculating the starting point in 2025 and
	welcomes any data related to existing household participation in
	demand response programs

Demand Response -	Residential EVs: Start at 0, ramp up to 2/3 of residential EVs participate in managed charging by 2030 50% of electric appliance installations by 2050 (linear growth from
Commercial	2025)
	Note: ODOE is still calculating the starting point in 2025 and welcomes any data related to existing household participation in demand response programs
	Commercial EVs: Start at 0, ramp up to 1/3 of commercial EVs participate in managed charging by 2030
Demand Response -	Includes dual fuel boilers, thermal energy storage, process flexibility,
Industrial	heating, cooling
	ODOE is still reviewing what figure to include, and would welcome
	feedback on current levels of industrial participation in demand
Emissions	response programs as well as future projections Emissions reduction on anthropogenic emissions, natural climate
constraint target	solutions, and sequestration not eligible
accounting	Solutions, and sequestration not engine
Carbon Capture	No CCS in Oregon permitted
and Storage (CCS)	
Non-CO2, non-	EPA developed supply curves of measures to reduce non-CO2 and
energy	non-energy emissions, e.g. reducing methane (CH4) leakage, reducing
	f-gasses in industrial processes and products, reducing nitrous oxide
	(N2O) from soil management. Optimized by the model against energy
	emissions reduction measures.

6. Electricity Generation Technologies

Energy Demand	Results from EnergyPATHWAYS model informs Regional Investment
	and Operations Model (RIO) (both Evolved Energy Research models)
	Data center and chip fabrication load growth trajectory (see above)
	Rooftop solar scheduled additions (see above)
Electric Supply	Existing supply minus announced coal/gas retirements
	Siting restrictions apply to new generation, interconnection,
	transmission
	Out-of-state generation requires transmission
Generation Options	Hydropower
	Solar (photovoltaic and thermal)
	Wind (onshore, offshore)

	Biomass (woody, manure, biogas)
	Biogas, hydrogen, renewable natural gas
	Geothermal
	Coal, gas, nuclear (siting restrictions – no new natural gas or nuclear
	sited in Oregon)
Transmission	The Nature Conservancy Power of Place West (inter-zonal)
Availability	Bonneville Power Administration (BPA) (for Oregon East-West zones)
	No new inter-zonal transmission is built until 2035
Inflation Reduction	Supply-side incentives include for hydrogen production, renewable
Act Incentives	electricity generation, battery storage, carbon capture, clean fuels,
	out-of-state nuclear

7. Land Use and Natural Resources

7.1 Land Use Screens

The Reference Scenario will restrict the use of legally protected (Level 1) and administratively protected areas (Level 2) in Oregon for energy development using The Nature Conservancy's Power of Place West study as a framework to select land use screens.

Categories of Exclusion	Definition of Category	Examples	Biomass
Level 1	Legally protected: Areas with existing legal restrictions	National Wildlife Refuges, National Parks, Marine Sanctuaries, Military Training Areas	All feedstocks included, exclude potential supply from conservation reserve program land
Level 2	Administratively protected: Level 1 + areas with existing administrative and legal designations where state or federal law requires consultation or review and lands owned by non-governmental organizations (NGOs) on which there are conservation restrictions.	Critical Habitat for Threatened or Endangered Species, Sage Grouse Priority Habitat Management Areas, vernal pools and wetlands, tribal lands	No net expansion of land for purpose-grown herbaceous biomass crops. Specifically, land available for herbaceous biomass crops (miscanthus and switchgrass) is limited to the share of land currently cultivated for corn that is eventually consumed as corn ethanol, which is phased out in all net zero scenarios by 2050.
Level 3	High conservation value: Level 1 + Level 2 + areas with high conservation	Prime Farmland, Important Bird Areas, big game	Same as Level 2

value as determined	priority habitat and	
through multi-state or	corridors, TNC	
ecoregional analysis (e.g.,	Ecologically Core	
state, federal, academic,	Areas, "Resilient	
NGO) and lands with social,	and Connected	
economic, or cultural value.	Network"	

7.2 Land Use Key Assumptions

Emissions	Emissions reduction on anthropogenic emissions, natural climate
constraint target	solutions, and sequestration not eligible
accounting	
Carbon Capture	No CCS in Oregon permitted
and Storage (CCS)	
Non-CO2, non-	EPA developed supply curves of measures to reduce non-CO2 and
energy	non-energy emissions, e.g. reducing methane (CH4) leakage, reducing
	f-gasses in industrial processes and products, reducing nitrous oxide
	(N2O) from soil management. Optimized by the model against energy
	emissions reduction measures.

8. Transmission and Distribution

The Transmission and Distribution working group had insufficient time to address all the data and assumptions that will be incorporated into the model. ODOE is posing the following questions for consideration.

Timing of Electricity	No new transmission until 2035, except for certain priority
Transmission	transmission projects that are currently planned and/or under
Development	development – examples include:
	New Lines – IPC's Boardman to Hemingway (B2H) project online in
	2030 and PAC's Gateway project online in 2035
	Reconductoring/Rebuilding Existing Lines - BPA's Big Eddy to
	Chemawa project and PGE's Round Butte to Bethel project, both
	expanding East to West transfer capacity from 230 kV to 500 kV and
	both online in 2035 (conservative assumption) or 2030 (liberal
	assumption)
	Are there other "in-flight" projects (new
	lines/reconductoring/rebuilding) that should be considered?
Electricity	Proxy value based on historic costs from Energy Information
Distribution System	Administration (EIA)
Cost Assumption	
	Should the proxy value be increased to account for higher costs needed to support electrification and adaptation to extreme weather

	events, including wildfires? If yes, what data source would support forecasted costs?
Pipeline Infrastructure	No new infrastructure development beyond operations and maintenance.
Assumptions	Should we be considering any other future costs? Including costs of
	repurposing pipelines for alternative fuels?
Electricity transfer capacity between East and West Oregon	Publicly available Bonneville Power Administration (BPA) data on historical path flows. Account for East to West transmission expansion projects noted above (B2H, Big Eddy to Chemawa, and Round Butte to Bethel)
	How/when do we account for BPA and PGE's planned rebuild projects across the Cascades? Such as: Big Eddy to Chemawa and Round Butte to Bethel?