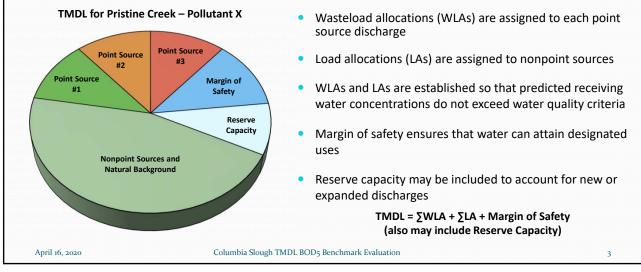
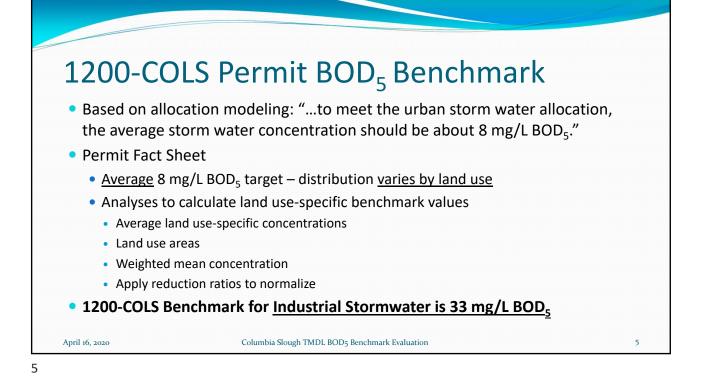
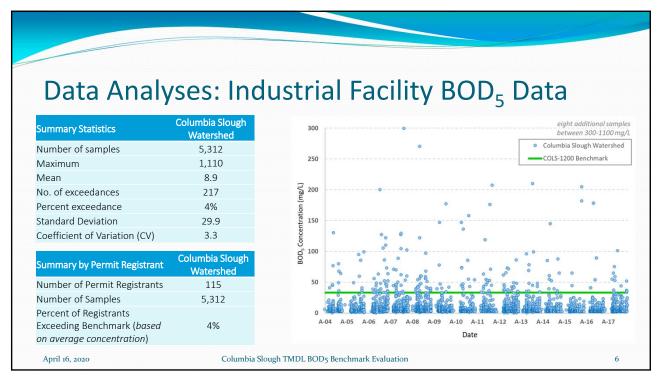
Columbia Slough TMDL BOD₅ Benchmark Evaluation

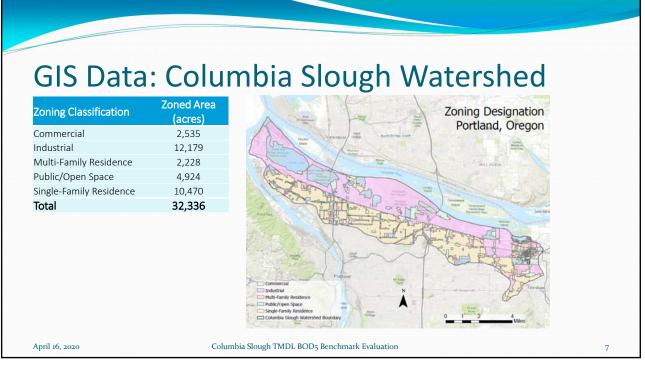
EPA Contract No. EP-C-16-003 Work Assignment 3-75

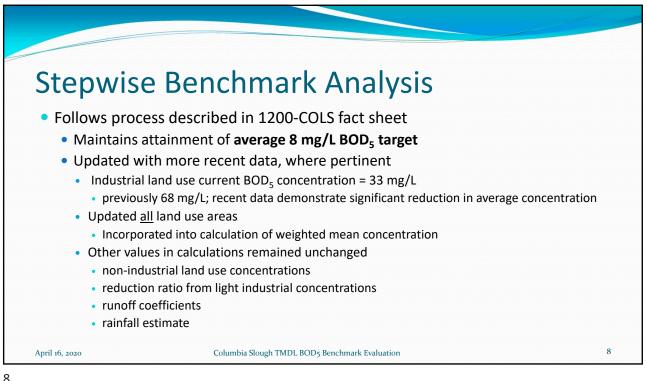

Objectives and Approach

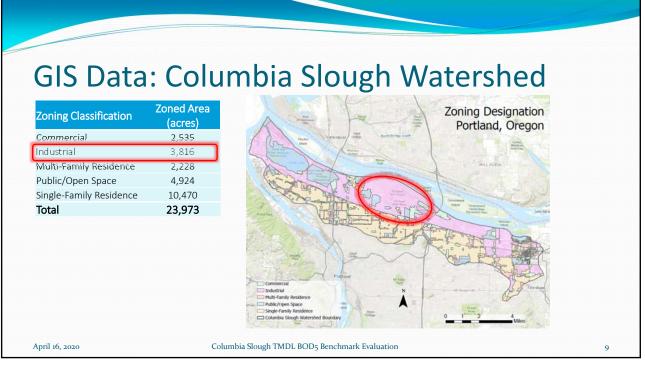

- Columbia Slough TMDLs issued in 1998, including BOD₅
 - Industrial facilities are source of loading to the Slough
 - Only TMDL in Oregon with wasteload allocation (WLA) for industrial stormwater
- Evaluate changes in land use and water quality since TMDL
 - Document review (TMDL, 1200-COLS permit, permit fact sheet, etc.)
 - Evaluate relevant data and information
 - BOD₅ data for industrial facilities
 - GIS data for Columbia Slough watershed
 - Conduct analyses to determine if current benchmark is sufficient and appropriate given changes in land use and water quality conditions

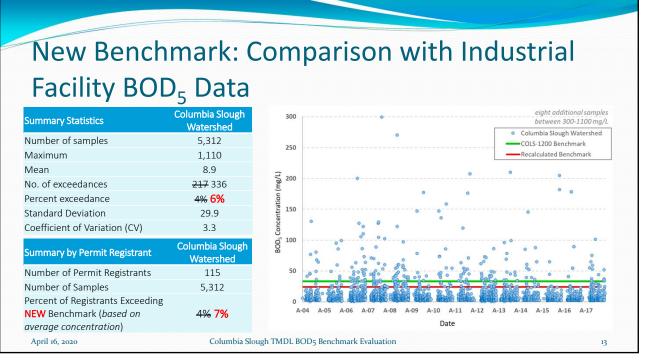

Columbia Slough TMDL BOD5 Benchmark Evaluation


April 16, 2020


Components of TMDL



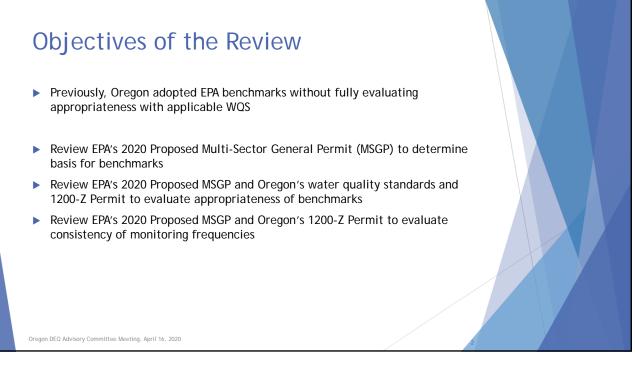


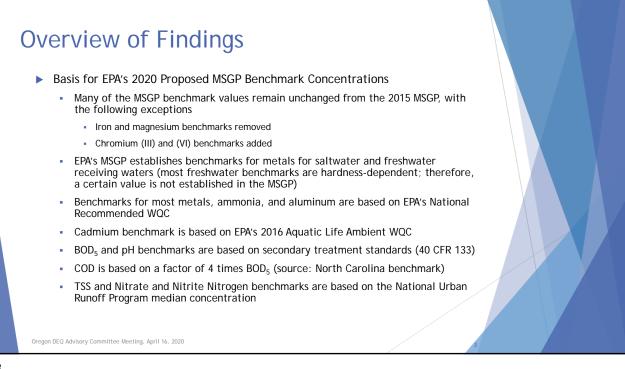


Land Use	Zoned Area (acres)	Runoff coefficient	Rainfall (in/yr)	Current BOD Concentration (mg/L)	Numerator (Area*Runoff Coefficient* Concentration*Rainfall)	Denominator (Area*Runoff Coefficient* Rainfall)
Single-Family Residence	10,470	0.37	34.3	11	1,461,622	132,875
Multi-Family Residence	2,228	0.59	34.3	11	495,968	45,088
ndustrial	3,816	0.68	34.3	33	2,937,145	89,004
Commercial	2,535	0.82	34.3	17	1,212,090	71,299
Public/Open Spaces	4,924	0.14	34.3	2	47,290	23,645
Total	23,973			17 mg/L	Weighted mean cor	ncentration
• 8 mg/L \rightarrow	% loss fron 16 mg/L	n monitore	ed value	to loads to	ation Columbia Slough 7 mg/L : 16 mg/l	_

Land Use	Current Concentration (mg/L)	Reduction	Reduction Ratio	Benchmark (mg/L) (Current – [reduction*ratio]	D
Single-Family Residence	11	1.0625	1	10	
Multi-Family Residence	11	1.0625	1	10	
Industrial	33	1.0625	8	24	
Commercial	17	1.0625	3	14	
Public/Open Spaces	2	1.0625	0	2	
 Industrial area updated data 		Uncentra			IIS/ L Dased Off

Condition	Area (acres)	Pollutant Concentration (mg/L)	Pollutant Load (kg/day)	Summary
Load from Industrial Area and Benchmark from 1200-COLS Fact Sheet	2,702	33	587	Assumed to be industrial load to meet TMDL; used for comparison with new loads
Load from New Area and Benchmark from 1200-COLS Fact Sheet	3,816	33	830	141% of load
Load from New Area and Benchmark	3,816	24	603	103% of load calculated with 1200-COLS fact sheet information (within reserve capacity)

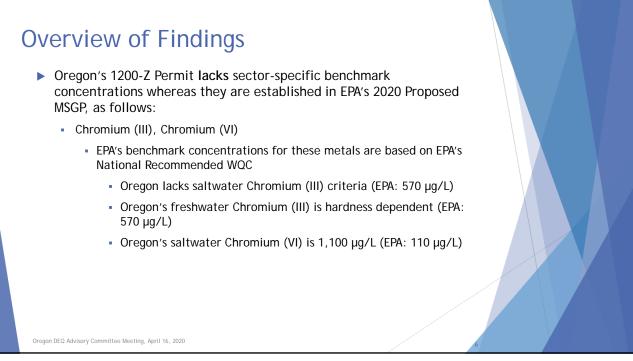



Benchmark Analysis: Sensitivity to Industrial Current Concentration

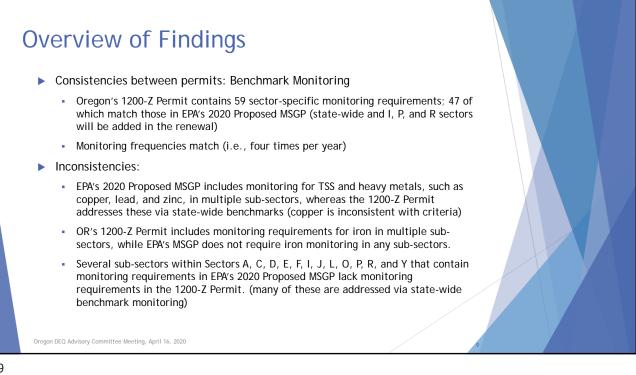
Condition	Current Concentration (mg/L)	Benchmark (mg/L)	Comparison to Industrial Load to Meet TMDL
Current benchmark	33	24	103% (uses a portion of reserve capacity)
Current concentration used in 1998 TMDL	68	37	158% (<u>exceeds</u> reserve capacity)
2004-2018 average concentration	8.9	9	39%
2004-2018 average concentration + 1 Standard Deviation	38.8	27	116% (uses a portion of reserve capacity)
2014-2018 average concentration	6.8	7	30%
2014-2018 average concentration + 1 Standard Deviation	20.5	17	73%
ril 16, 2020	Columbia Slough TMDL B	OD5 Benchmark Ev	aluation

Oregon 1200-Z Benchmarks Comparison with EPA's 2020 Proposed MSGP

Oregon DEQ Advisory Committee Meeting April 16, 2020



Ov •	 Proposed MSGP esta Planning to imple Oregon's 1200-Z Pe whereas they are e TSS (EPA: 100 mg 	rmit establishes a sin ablishes saltwater ar ement saltwater/freshv rmit lacks sector-spo stablished in EPA's 20 /L)	ngle benchmark cond nd freshwater bench vater benchmarks in fu ecific benchmark cor 020 Proposed MSGP, a	marks ture 1200-Z Permit ncentrations	
	Columbia River	state-wide benchmarks in Columbia Slough	Portland Harbor	Regional	
	100 mg/L	30 mg/L	30 mg/L	100 mg/L	
Orego	n DEQ Advisory Committee Meeting, Apr	ii 16, 2020		5	

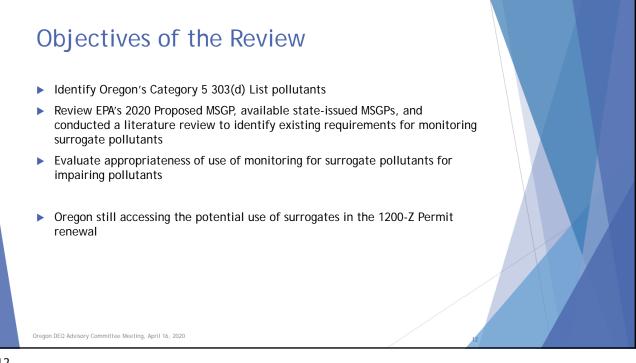


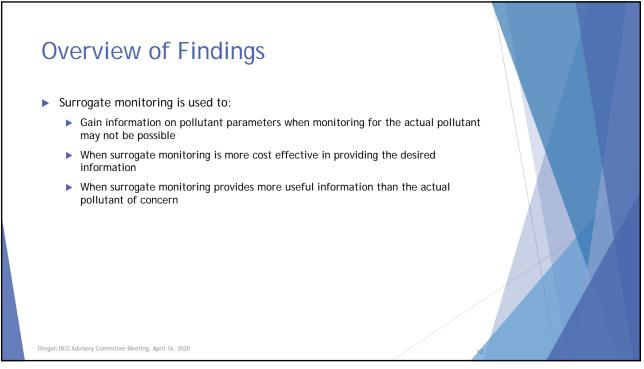
O	FreSalAddressed	-Z Permit are establi ad, and Zinc chmark concent eshwater criteri Itwater criteria: d via State-wide	acks sector-s ished in EPA's rations for these me a are hardness dependence Copper: 4.8 ug/L; L	2020 Propose etals are based on El ndent .ead: 210 ug/L; Zinc	ed MSGP, as fo PA's National Recom :: 90 ug/L (all consis	Ilows: mended WQC	
	Parameter	Units	hardness dependent Columbia River	Columbia Slough	Portland Harbor	Regional	
	Total Copper	mg/L	0.020	0.020	0.020	0.020	
	Total Lead	mg/L	0.040	0.060	0.040	0.015	
	Total Zinc	mg/L	0.12	0.24	0.12	0.12	
C	Dregon DEQ Advisory Committee Me	eting, April 16, 2020					

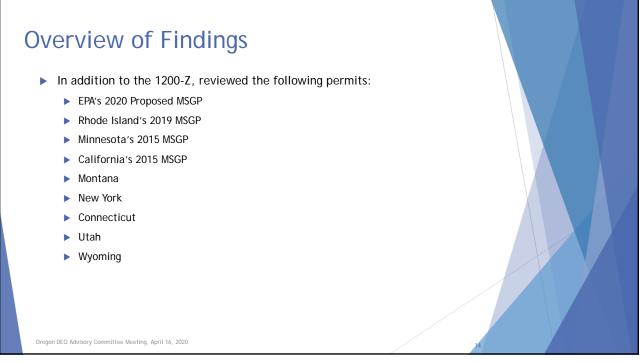
Overview of Findings

- EPA's 2020 Proposed MSGP lacks sector-specific benchmark for Iron, whereas Oregon's 1200-Z Permit includes a benchmark concentration based on Oregon's freshwater chronic WQC
 - EPA's 2020 Proposed MSGP Fact Sheet indicates Iron benchmark was removed from permit
- Differences between EPA's 2020 Proposed MSGP and Oregon's 1200-Z benchmark concentrations
 - Nickel (sector G): EPA's saltwater benchmark = 74 µg/L, 1200-Z: 500 µg/L (OR WQC: 74 µg/L)
 - Silver (sector G): EPA's saltwater benchmark = 1.9 $\mu g/L$, 1200-Z: 0.5 $\mu g/L$ (OR WQC: 1.9 $\mu g/L)$
 - Cadmium (sector K): EPA's freshwater benchmark (hardness dependent) and saltwater benchmark of 33 ug/L, 1200-Z: 1 $\mu g/L$
 - Oregon's Cadmium saltwater WQC = 40 µg/L (acute)
- Consistencies between EPA's 2020 Proposed MSGP benchmark concentrations and Oregon's WQS
 - EPA's Proposed MSGP includes a benchmark for metals, for saltwater receiving waters
 Saltwater benchmarks for Copper, Arsenic, Lead, Nickel, Silver, Zinc match Oregon's acute saltwater WQC

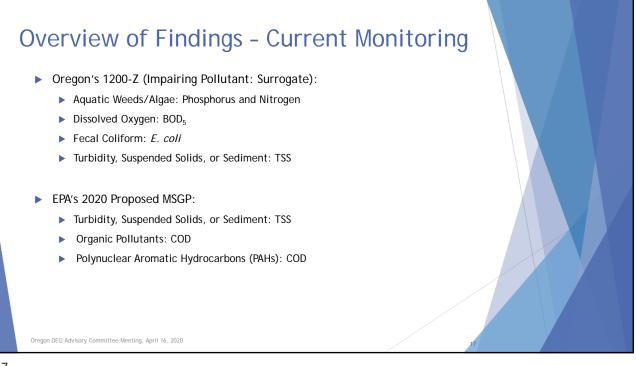
Oregon DEQ Advisory Committee Meeting, April 16, 2020

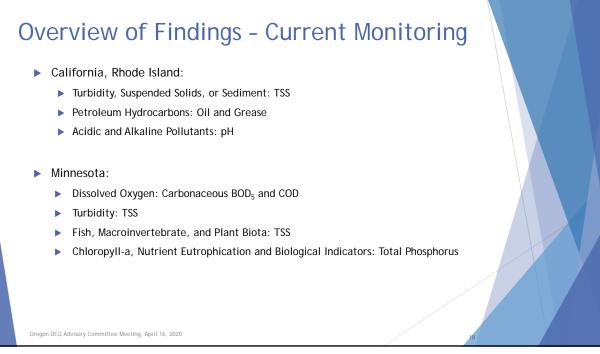



- Establish freshwater and saltwater benchmark concentrations
 - Define saltwater for the purpose of benchmark monitoring
 - Currently planned for Oregon's 1200-Z Permit
- Discuss basis for antimony benchmark concentration, as it does not align with Oregon's WQC
- Consider revising benchmark concentrations for nickel and silver consistent with EPA's 2020 Proposed MSGP and Oregon's WQS
- Consider establishing benchmarks for metals (e.g., cadmium, chromium (III) and (VI)) consistent with Oregon's WQS


Oregon 1200-Z Evaluating Surrogate Monitoring for Impairing Pollutants

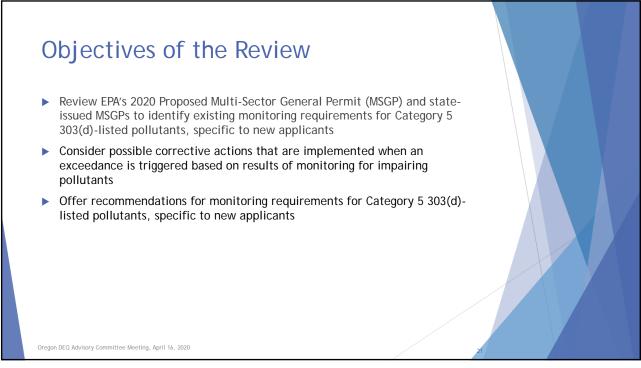
Oregon DEQ Advisory Committee Meeting April 16, 2020



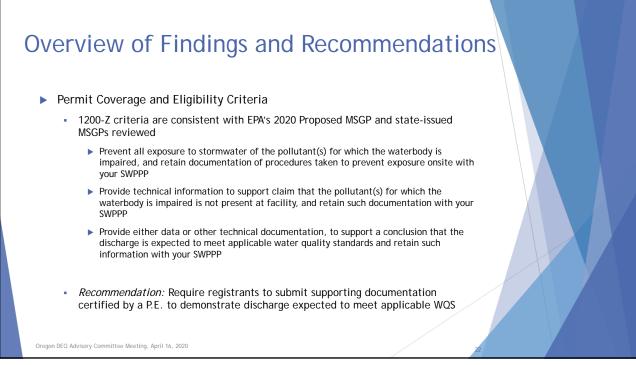


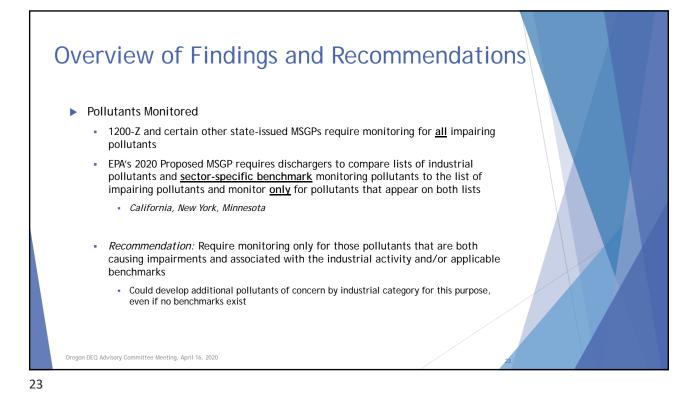
Overview of Findings Example of Literature Reviews Estimating Metal Concentrations with Regression Analysis and Water-Quality Surrogates at Nine Sites on the Animas And San Juan Rivers, Colorado, New Mexico, and Utah, USGS, 2018 Use of Water Quality Surrogates to Estimate Total Phosphorus Concentrations in lowa Rivers, Journal of Hydrology: Regional Studies, Keith E. Schilling, et al, 2017 Predicting Total Dissolved Gas (TDG) for the Mid-Columbia River System, Environmental Sciences Division, Oak Ridge National Laboratory and U.S. Dept of Interior, Bureau of Reclamation, Boualem Hadjerious, et al, undated (after 2011) Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Senor and Streamflow Data, USGS, Patrick P. Rassmussen, et al, 2009, Revised 2011 Code of Federal Regulations, Title 40, Section 136.3 Oregon DEQ Advisory Committee Meeting, April 16, 2020

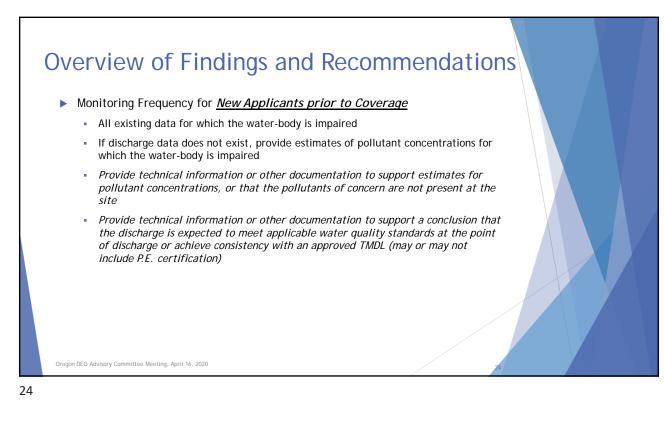
List of Impairing Pollutants of	Possible Corresponding	Reference	
Concern - Oregon	Surrogate Pollutant	-	
Aquatic Weeds and Algae	Phosphorus and Nitrogen Chlorophyll-a	Oregon 1200-Z PER (2011) HAR 11-54	
Piele etcel Culture	Total suspended solids (TSS)	EPA Region 5 (Minnesota MSGP)	
Biological Criteria	Phosphorus, Total (as P) for	EPA Region 5 (Minnesota MSGP) EPA Region 5 (Minnesota MSGP)	4
Chlorophyll-a	nutrient eutrophication	and HAR 11-54	
	BOD, Carbonaceous 5-Day (@20	allu IIAK 11-54	4
	Deg C) (CBOD ₅), and/or COD	EPA Region 5 (Minnesota MSGP)	
Dissolved Oxygen	(Chemical Oxygen Demand)	Li n Region 5 (Minnesota Modi)	
	BOD ₅	Oregon 1200-Z PER (2011)	
Fecal Coliform	E. coli	Oregon 1200-Z PER (2011)	
Polynuclear Aromatic Hydrocarbons	E. COII	Oregon 1200-2 PER (2011)	
(PAHs)	COD	EPA 2020 Proposed MSGP	
		EPA 2020 Proposed MSGP and EPA	
Sedimentation and Turbidity	TSS	Region 1 (Rhode Island MSGP)	
Organic pollutants	COD	EPA 2020 Proposed MSGP	
Nutrient Eutrophication			
Biological Indicators	Phosphorus, Total (as P)	EPA Region 5 (Minnesota MSGP)	
		EPA Region 5 (Minnesota MSGP)	
Turbidity	TSS	and Oregon 1200-Z PER (2011)	
Petroleum Hydrocarbons	Oil and Grease	EPA Region 9 (California)	1
Acidic and Alkaline Pollutants	pH	EPA Region 9 (California)	1

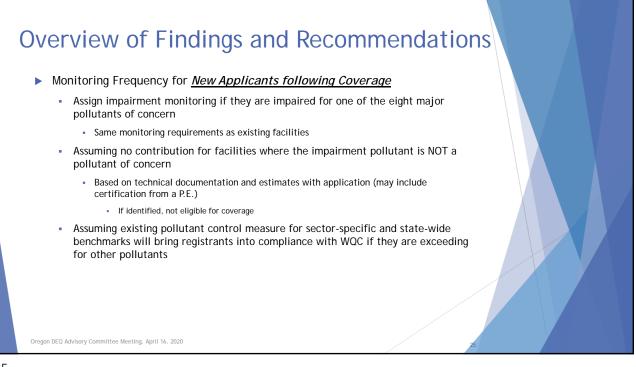

Conclusions

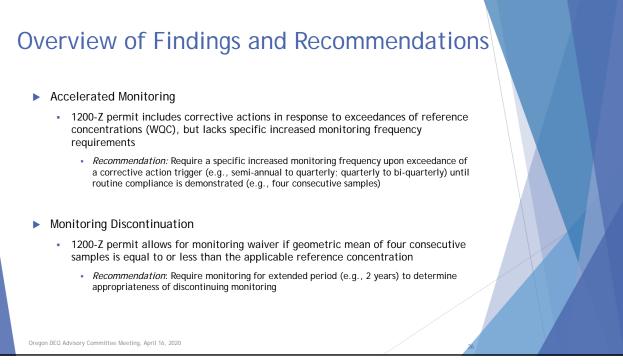
 Monitor specific impairing pollutants to determine compliance with numeric WQS

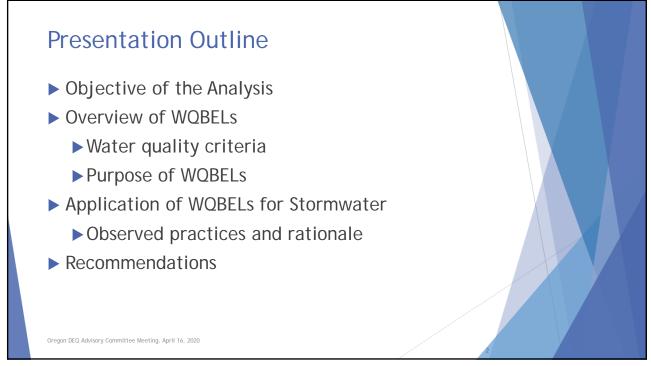

- Actual data for impairing pollutant provides direct measurement of water quality impairment
- Surrogate monitoring is useful when a reliable correlation between the surrogate parameter and the actual parameter exists
 - TSS and turbidity data submitted by 1200-Z enrollees illustrates weak correlation
 Both OR and WA have statements in technical documents indicating poor correlation without site-specific analysis
- Surrogate parameters may be appropriate when they provide useful data
 - When BOD/COD data will be utilized by the permitting authority in TMDL development or evaluating impacts on DO concentrations in the receiving water
 - When evaluating nutrient contributions to eutrophication
 - When the pollutant of concern is a subset of the surrogate
 - Hydrocarbons and oil/grease
 - E. coli/fecal coliform

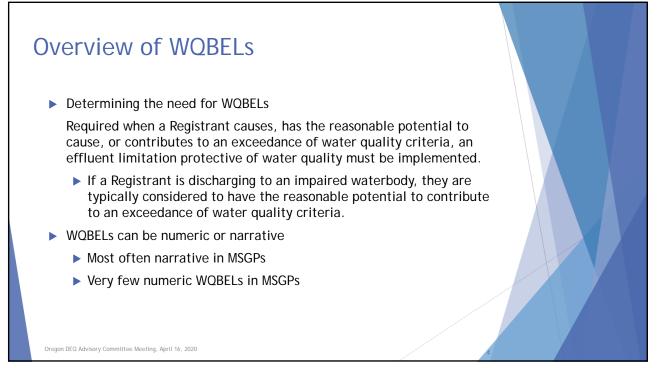

Oregon DEQ Advisory Committee Meeting, April 16, 2020

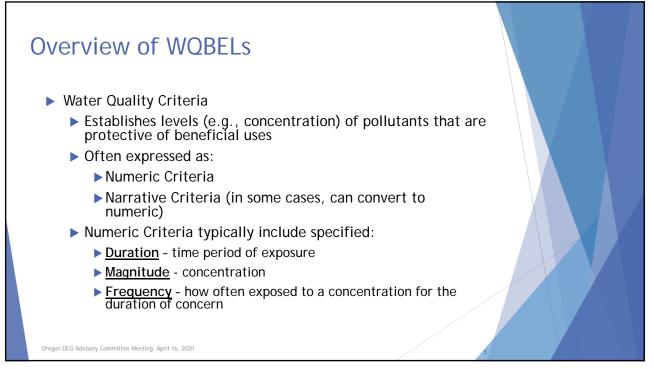




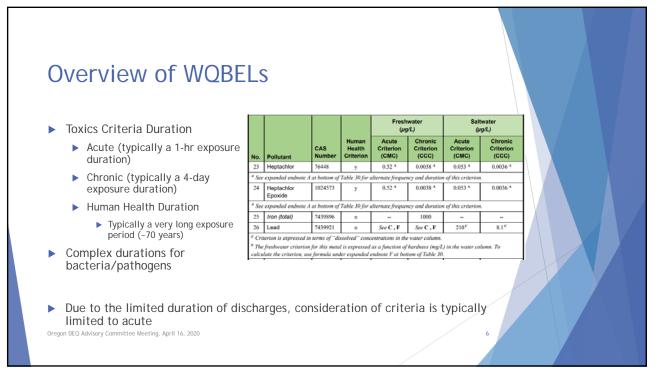


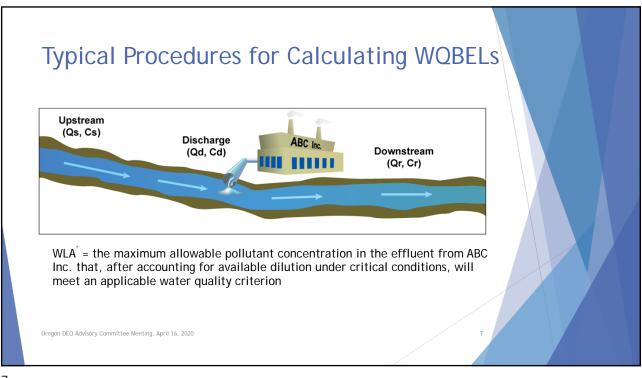


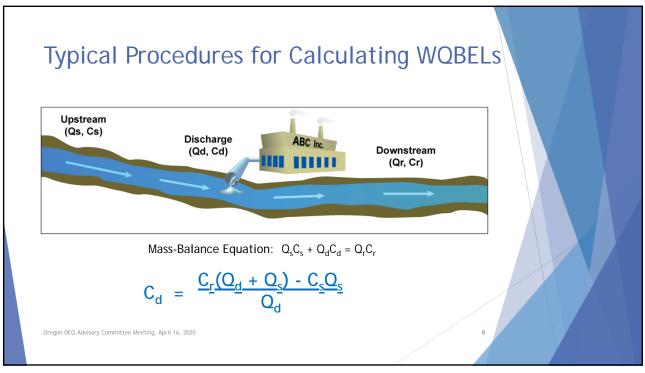


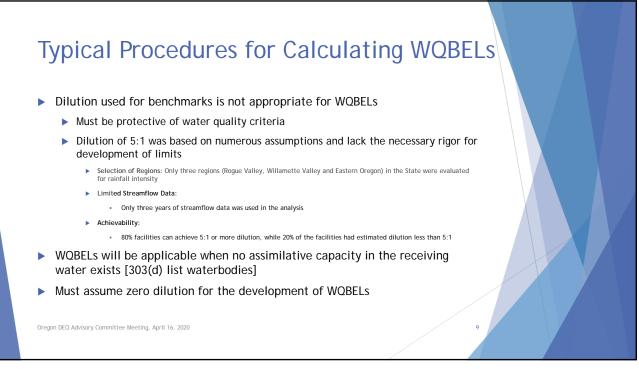

Oregon 1200-Z Water Quality-Based Effluent Limitations

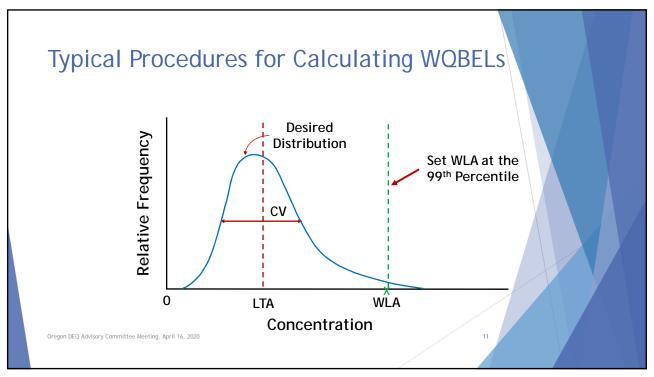
Oregon DEQ Advisory Committee Meeting April 16, 2020

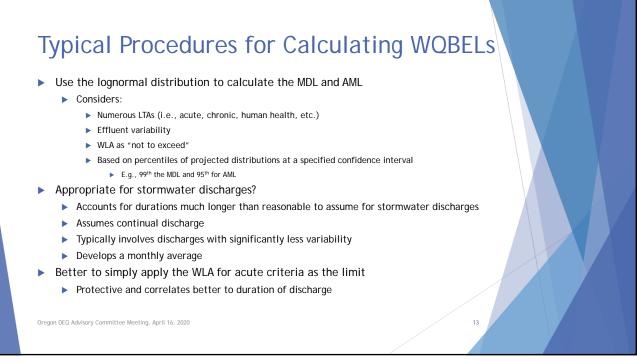



Overvie	ew of WQBELs		
	Technology-based Effluent Limitations (TBELs)	Water Quality-based Effluent Limitations (WQBELs)	
Goal or Policy:	 Zero Discharge of Pollutants 	 Fishable and Swimmable Waters 	
		No Toxics in Toxic Amounts	
Standards:	 Technology 	 Water Quality 	
NPDES	 40 CFR 122.44(a), (e) 	• 40 CFR 122.44(d)	
Regulations:	• 40 CFR 125.3		
Oregon DEQ Advisory Comm	ittee Meeting, April 16, 2020		

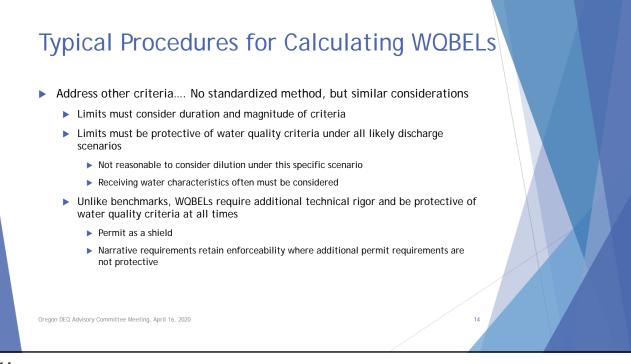




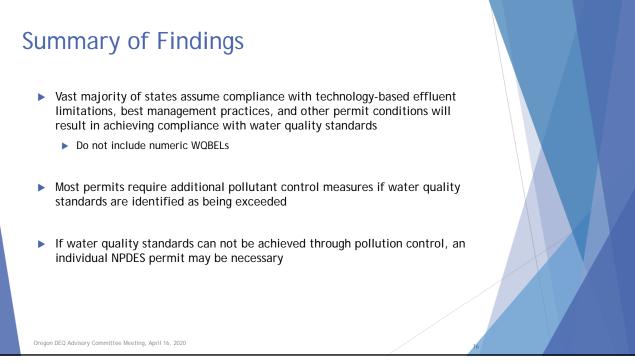


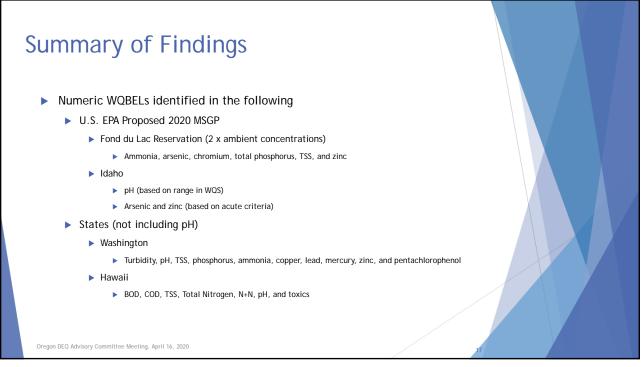


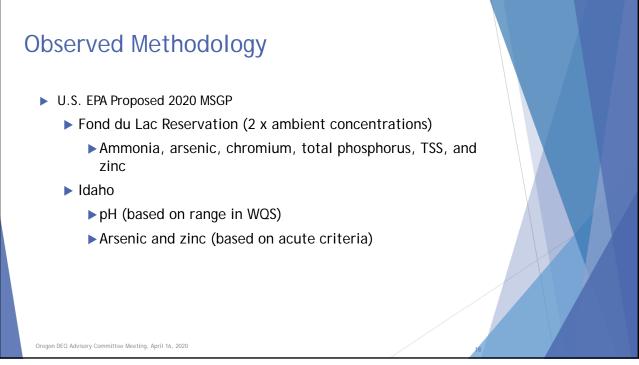
Typical Procedures for Calculating WQBELs

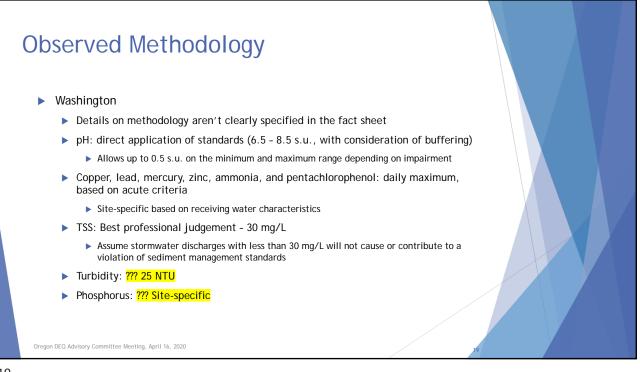

WLAs	Typical WQBELs
Derived from water quality criteria through TMDLs, watershed analyses, or facility-specific analyses	Derived from applicable WLAs
Often have the same duration as criteria (e.g., 1-hour average, 4-day average)	Regulations [§ 122.45(d)] require that, for continuous discharges, all effluent limitations shall, <i>unless</i> <i>impracticable</i> , be stated as • MDLs and AMLs for non-POTWs • AWLs and AMLs for POTWs
he expression of limits for stormwat ound to be impracticable E0 Advisory Committee Meeting, April 16, 2020	er discharges as AMLs is typically

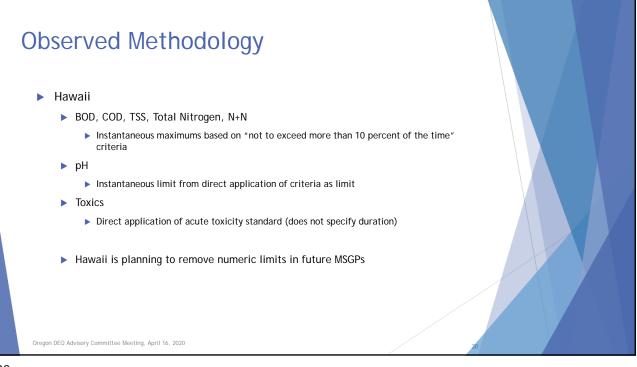
Typical Procedures for C	'alcı	ilati	ing		RELC
Typical Flucedules for C		Παι	ing		JLL3
Sector	Copper mg/L	Lead mg/L	Zinc mg/L	TSS mg/L	1
Sector A: Timber Products	2.8	4.6	8.4	3.1	
Sector AA: Fabricated Metal Products	3.7	3.2	3.5	2.9	
Sector AB: Transportation Equipment, Industrial or Commercial Machinery	4.5	2.7	13.9	2.8	
Sector AC: Electronic, Electrical, Photographic and Optical Goods	2.1	2.3	1.7	2.4	
Sector B: Paper and Allied Products	1.9	20.0	2.4	2.3	
Sector C: Chemicals and Allied Products Manufacturing and Refining	3.1	2.7	10.3	2.5	
Sector D: Petroleum Refining and Related Industries	2.5	3.0	1.6	2.6	
Sector E: Glass, Clay, Cement, Concrete, and Gypsum Products	7.5	10.5	2.9	3.0	
Sector F: Primary Metals	2.2	3.3	1.5	5.4	
Sector K: Hazardous Waste Treatment, Storage, or Disposal Facilities	24.5	4.1	23.9	3.7	
Sector M: Motor Vehicle Parts, Used	1.4	2.7	1.6	2.1	
Sector N: Scrap and Waste Materials	2.9	3.8	2.8	2.6	
Sector O: Steam Electric Generating Facilities	0.9	1.2	1.0	1.3	
Sector P: Land Transportation and Warehousing	41.5	2.6	2.1	3.0	
Sector Q: Water Transportation	6.7	3.6	11.0	3.0	
Sector R: Ship and Boat Building and Repairing Yards	1.9	2.0	1.4	2.2	
Sector S: Air Transportation Facilities	6.6	2.7	4.3	4.0	
Sector T: Treatment Works	1.6	2.4	1.7	3.5	
Sector U: Food and Kindred Products	4.4	3.3	2.8	16.8	
Sector Unassigned	42.0	3.3	2.4	3.2	
Sector W: Furniture and Fixtures	2.0	1.8	1.7	3.7	
Sector Y: Rubber, Miscellaneous Plastic Products, and Miscellaneous Manufacturing Industries	2.3	11.9	1.7	2.7	
Oregon DEQ Advisory Committee Meeting, April 16, 2020					12

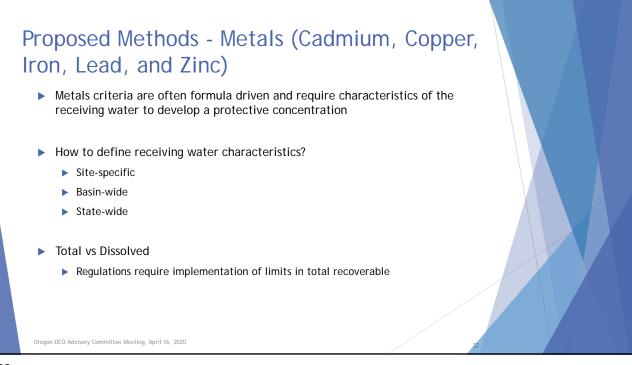


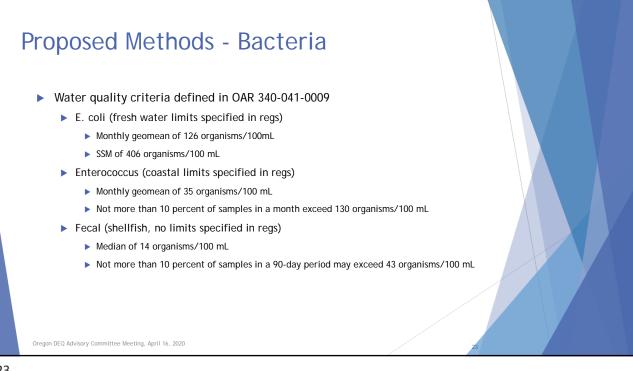




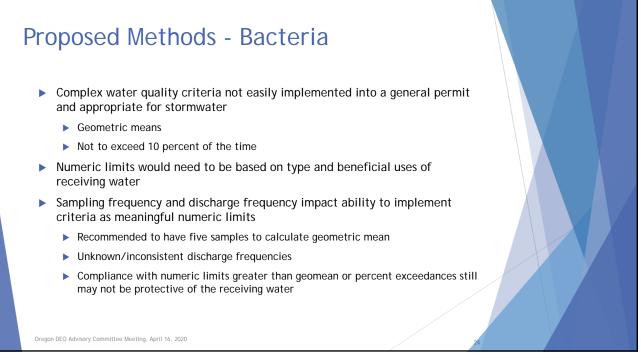


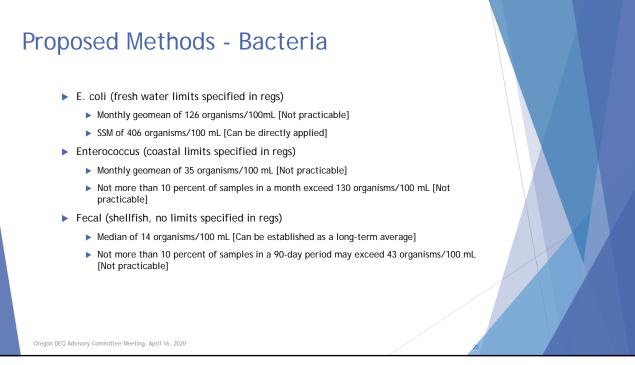


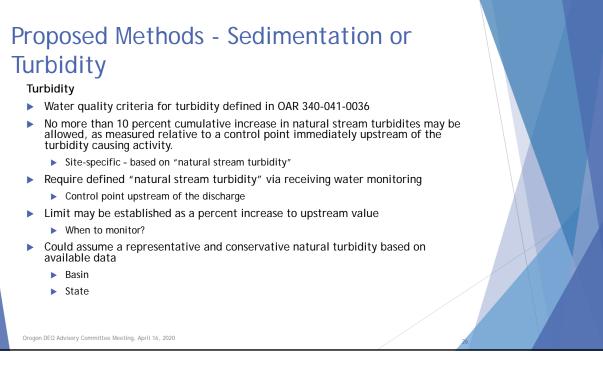




Proposed Methods - Metals (Cadmium, Copper, Iron, Lead, and Zinc)


- Water quality criteria defined in Table 30 of OAR 340-041-8033
- Includes acute and chronic aquatic life, and human health criteria
- Criteria for the following pollutants are formula driven and would be sitespecific based on hardness or other characteristics of the receiving water:
 - Cadmium (hardness)
 - Copper (BLM)
 - Lead (hardness)
 - Zinc (hardness)
- Iron does not have acute criteria. Recommend iron be controlled by narrative permit conditions. EPA's 2020 MSGP is proposing to remove iron benchmark due to a lack of evidence of acute effects.
- Directly apply acute criteria for metals as a 1-hr average, do not establish numeric limit for iron

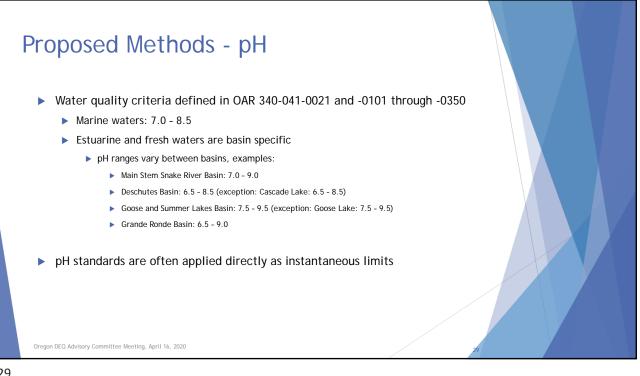

Oregon DEQ Advisory Committee Meeting, April 16, 2020



Proposed Methods - Sedimentation or Turbidity

Sedimentation/Total Suspended Solids

- No defined water quality standard for sedimentation
 - Currently addressed through application of state narrative criteria
 - Sediment TMDLs reference turbidity standard
 - TSS may be correlated to turbidity, but will be site specific and require an evaluation of local relationships between the variables
 - If a site-specific correlation is determined, TSS may be applied as a surrogate for turbidity and/or sediment
 - > Default of 30 mg/L has been assumed by Washington based on BPJ
 - Not practical


Oregon DEQ Advisory Committee Meeting, April 16, 2020

27

Proposed Methods - Sedimentation or Turbidity Example TSS Targets developed for TMDL to achieve a turbidity of 30 NTU

Watershed target co	ncentrations/loading capacities
Watershed	TSS Target (mg/L) @ 30 NTU Turbidity
Upper Umatilla River	76
Meacham Creek	60
Squaw/Buckaroo	99
Pendleton	80*
Wildhorse	86
Tutuilla	70
McKay	72
Birch	110
Butter	110
Gulches and Canyons	80*
Stage Gulch	80*
Sand Hollow	80*
Cold Springs	80*
Lower Umatilla River	77

Oregon DEQ Advisory Committee Meeting, April 16, 2020

