OPERATION & MAINTENANCE MANUAL

DFI No. D00177

Facility Type: Water Quality Biofiltration

Swale

JUNE, 2011

INDEX

1.	IDENTIFICATION		1
2.	FACILITY CONTACT INF	ORMATION	1
3.	CONSTRUCTION		1
4.	STORM DRAIN SYSTEM	AND FACILITY OVERVIEW	2
5.	FACILITY HAZ MAT SPIL	L FEATURE(S)	6
6.	AUXILIARY OUTLET (HIC	GH FLOW BYPASS)	6
7.	MAINTENANCE REQUIR	EMENTS	6
8.	WASTE MATERIAL HAN	DLING	7
AP	PENDIX A:	Operational Plan and Profile Draw	ving(s)
ΑP	PENDIX B:	ODOT Project Plan S	Sheets

1. Identification

Drainage Facility ID (DFI): **D00177**

Facility Type: Water Quality Biofiltration Swale

Construction Drawings: (V-File Number) 37V-041

Location: District: 2B (Old 2A)

Highway No.: 047

Mile Post: 67.93/67.98 (beg./end)

Description: This facility is located on the north side of westbound US 26 (Hwy 047), 1,380 feet west of SW Cedar Hills Blvd. Access to the facility can be obtained from

Corby Drive.

2. Facility Contact Information

Contact the Engineer of Record, Region Technical Center, or Geo-Environmental's Senior Hydraulics Engineer for:

- Operational clarification
- Maintenance clarification
- Repair or restoration assistance

Engineering Contacts:

Region Technical Center Hydro Unit Manager

Or

Geo-Environmental Senior Hydraulics Engineer (503) 986-3365.

3. Construction

Engineer of Record: ODOT Designer – Region 1 Tech. Center, Bruce

S. Council, (503) 731-8319

Facility construction: March 11, 2004

Contractor: Mowatt Construction Company

4. Storm Drain System and Facility Overview

A water quality swale is a flat-bottomed open channel designed to treat stormwater runoff from highway pavement areas. This type of facility is lined with grass. Treatment by trapping sedimentation occurs when stormwater runoff flows through the grass.

The swale is located on the north side of westbound US 26 (Hwy 047). Access to the swale can be obtained from SW Corby Drive through an access gate. The swale is approximately 279 feet in length. It is composed of five segments separated by riprap channels, and it drains from the east to the west. A ditch inlet serves as the swale outlet, and ties into a 12-inch and 22-inch storm pipe that conveys the water to the west.

The drainage area for the swale includes both the onramp to westbound US 26 (Hwy 047) and the north half of the westbound US 26 (Hwy 047) from the facility to Cedar Hills Blvd, which is approximately 1,350 feet to the east. The flow is collected by a series of inlets, and is conveyed by 12 and 15-inch diameter storm pipes.

A high-low split flow manhole (See the Operational Plan, Point A) is located at the east end of the water quality swale. This manhole diverts the high flow into a detention pipe facility (DFI D00178) just south of the water quality facility. The swale is considered an offline facility with only the low flow being directed into the swale. After the split flow manhole, the runoff is pretreated through a water quality manhole (D00184) before being discharged into the swale (Points B & C).

After the water is treated through the swale, it is discharged into a 21-inch storm pipe that drains towards the west. The detention facility (DFI D00178) discharges into the same storm pipe.

Photo 1: Water quality swale looking west. US 26 (Hwy 047) is located to the left.

Photo 2: Water quality swale looking west. Westbound on amp to US 26 (Hwy 047) is located to the left.

- 3 -

Photo 3: Water quality swale looking west. Riprap channel with flow spreader in foreground.

Photo 4: Swale outlet and access gate looking west.

- 4 -

Photo 5: Water quality swale looking east. US 26 (Hwy 047) is located to the right.

For further information and details regarding the system refer to Appendix A for the Operational Plan and Appendix B for the Construction Project Plan sheets.

- A. Maintenance equipment access: The facility can be accessed from west via SW Corby Dr. just north of US26 (Hwy 047).
- B. Heavy equipment access into facility:

 - ☐ Allowed (with limitations)
 - □ Not allowed
- C. Special Features:

 - □ Porous Pavers
 - □ Liners
 - ☐ Underdrains

5. Facility Haz Mat Spill Feature(s)

The Water Quality Biofiltration swale can effectively trap a volume of liquid by blocking the swale outlet with either sandbags or a plate. See Photo 4 and Point D in the Operational Plan for the swale outlet.

6. Auxiliary Outlet (High Flow Bypass)

Auxiliary Outlets are provided if the primary outlet control structure can not safely pass the projected high flows. Broad-crested spillway weirs and over flow risers are the two most common auxiliary outlets used in stormwater treatment facility design. The auxiliary outlet feature is either a part of the facility or an additional storm drain feature/structure.

The auxiliary outlet feature for this facility is:
□ Designed into facility
⊠Other, as noted – This facility does not contain an auxiliary outlet

7. Maintenance Requirements

Routine maintenance table for non-proprietary stormwater treatment and storage/detention facilities have been incorporated into ODOT's Maintenance Guide. These tables summarize the maintenance requirements for ponds, swales, filter strips, bioslopes, and detention tanks and vaults. Special maintenance requirements in addition to the routine requirements are noted below when applicable.

The ODOT Maintenance Guide can be viewed at the following website:

http://www.oregon.gov/ODOT/HWY/OOM/MGuide.shtml

Maintenance requirements for proprietary structures, such as underground water quality manholes and/or vaults with filter media are noted in Appendix C when applicable.

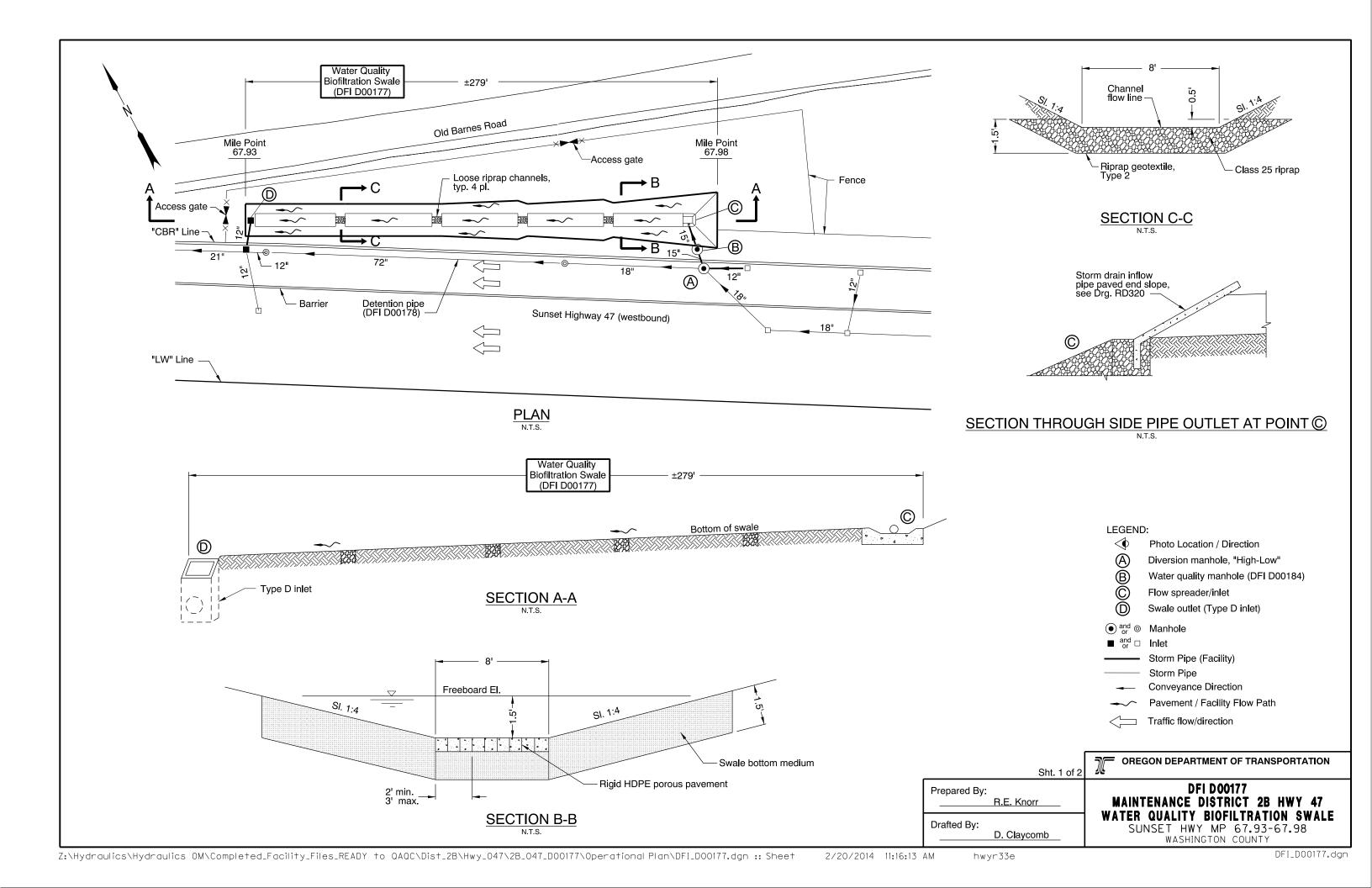
The following stormwater facility maintenance table (See ODOT Maintenance Guide) should be used to maintain the facility outlined in this Operation and Maintenance Manual or follow the Maintenance requirements outlined in Appendix C when proprietary structure is selected below:

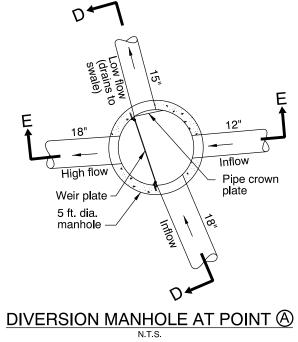
\boxtimes	Table 1 (general maintenance)
	Table 2 (stormwater ponds)
X	able 3 (water quality or biofiltration swales)

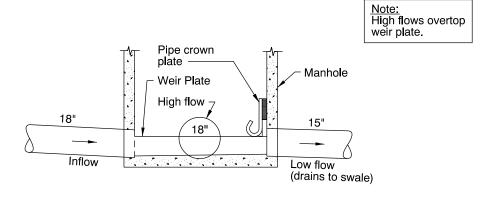
☐ Table 4 (water quality filter s	trips)
☐ Table 5 (water quality bioslo)	pes)
☐ Table 6 (detention tank)	
☐ Table 7 (detention vault)	
☐ Appendix C (proprietary strue)	cture)
☐ Special Maintenance require	ements:
Note: Special maintenance Requirem	ents Require Concurrence from
ODOT SR Hydraulics Engineer.	•

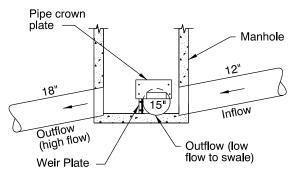
8. Waste Material Handling

Material removed from the facility is defined as waste by DEQ. Refer to the roadwaste section of the ODOT Maintenance Yard Environmental Management System (EMS) Policy and Procedures Manual for disposal options: http://egov.oregon.gov/ODOT/HWY/OOM/EMS.shtml

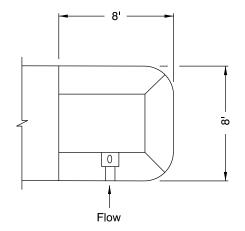

Contact any of the following for more detailed information about management of waste materials found on site:


ODOT Clean Water Unit	(503) 986-3008
ODOT Statewide Hazmat Coordinator	(503) 229-5129
ODOT Region Hazmat Coordinator	(503) 731-8304
ODEQ Northwest Region Office	(503) 229-5263


Appendix A


Content:

• Operational Plan and Profile Drawing(s)



SECTION D-D

SECTION E-E

FLOW SPREADER/INLET DETAIL AT POINT ©

OREGON DEPARTMENT OF TRANSPORTATION Sht. 2 of 2 **DFI D00177** Prepared By: R.E. Knorr MAINTENANCE DISTRICT 2B HWY 47 WATER QUALITY BIOFILTRATION SWALE Drafted By: SUNSET HWY MP 67.93-67.98 washington county

D. Claycomb

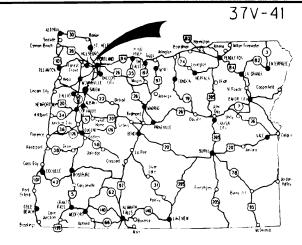
Appendix B

Content:

- ODOT Project Plan Sheets
 - o Cover/Title Sheet
 - o Water Quality/Detention Plan Sheets
 - o Other Details

	INDEX OF SHEETS					
SHEET NO.	DESCRIPTION					
1	Title Sheet					
1A. 1A-2	Index Of Sheets Cont'd.					
1A-3	Std. Drg. Nos.					
1B	Sheet Layout					
2.2A.2A-2						
Thru	Typical Sections					
2A-65 Incl.						
2B, 2B-2						
Thru	Details					
2B-18 Incl.						
2C, 2C-2	Traffic Control Details					
2CA, 2CA-2,						
2CA-2A.	Traff's Control Plane Mark Asse					
2CA-3 Thru	Traffic Control Plans - Murray Work Area					
2CA-57 Incl.						
2CB, 2CB-2						
Thru	Traffic Control Plans - Cornell Work Area					
2CB-12 Incl.						
2D. 2D-2.						
Thru	Pipe Data Sheet					
2D-12. Incl.						

STATE OF OREGON DEPARTMENT OF TRANSPORTATION


PLANS FOR PROPOSED PROJECT

GRADING, DRAINAGE, STRUCTURES, PAVING, SIGNING, ILLUMINATION, SIGNALS, & ROADSIDE DEVELOPMENT

US26: CORNELL RD. - OR217 (BEAVERTON) SEC.

SUNSET HIGHWAY

WASHINGTON COUNTY MARCH 2004

Overall Length Of Project - 6.51 km (4.05 Miles)

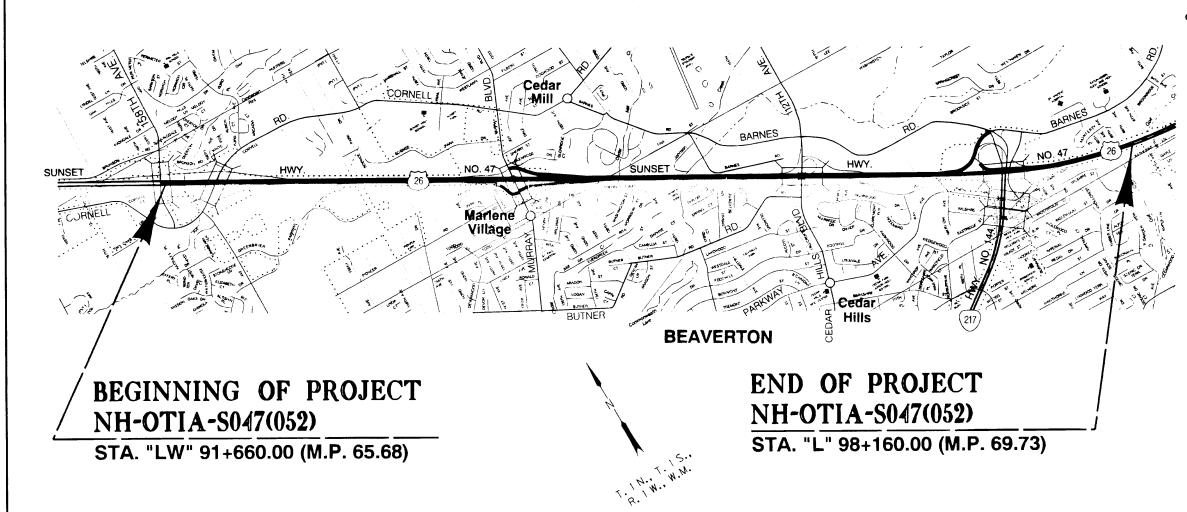
ATTENTION:

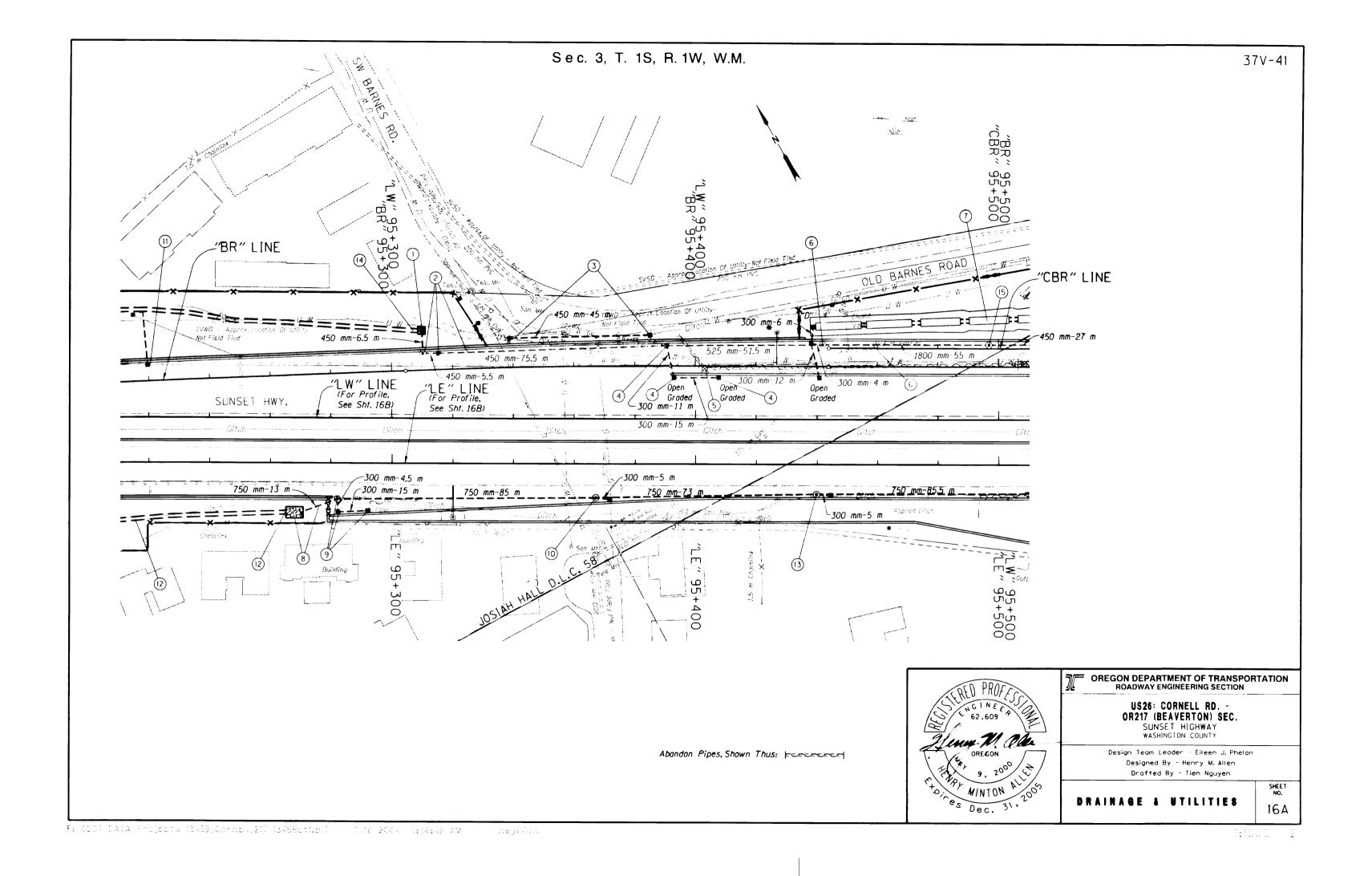
Oregon Law Requires You to Follow Rules
Adopted By The Oregon Utility Notification
Center. Those Rules Are Set Forth in
OAR 952-001-0010 Through OAR 952-001-0090.
You May Obtain Copies Of The Rules By Calling
The Center. (Note: The Telephone Number For
The Oregon Utility Center Is (503) 232-1987.)

JA JA JA JA JA JA JA JA JA LET'S ALL JA WORK TOGETHER JA TO MAKE THIS JA JOB SAFE JA JA JA JA JA JA JA JA JA

OREGON TRANSPORTATION COMMISSION

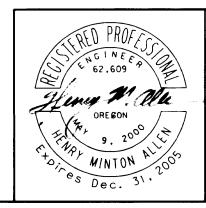
Stuart Foster CHAIRMAN
Gail L. Achterman COMMISSIONER
Mike Nelson COMMISSIONER
Randall Papé COMMISSIONER
John Russell COMMISSIONER


Bruce A. Warner DIRECTOR OF TRANSPORTATION



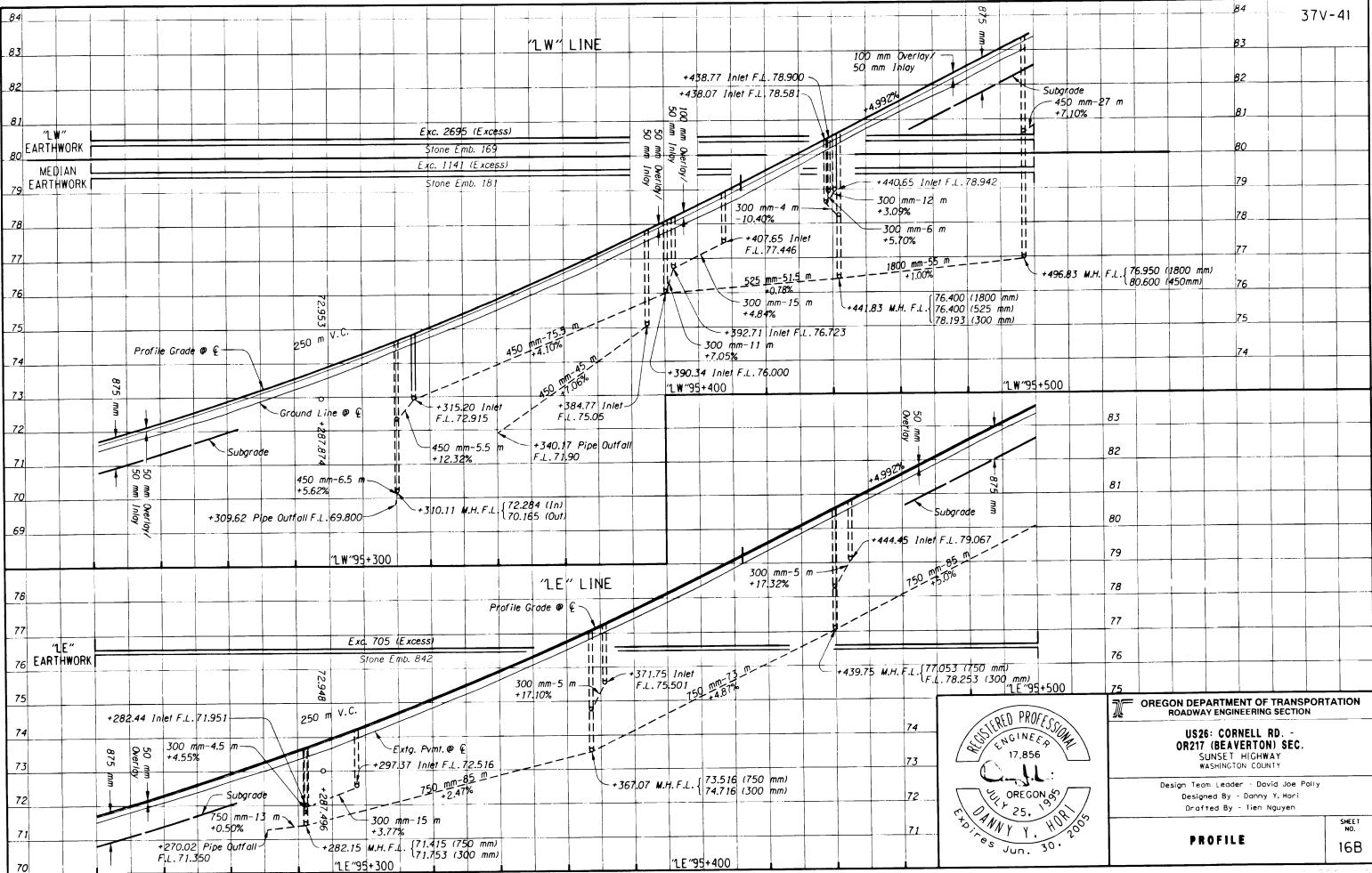
Cotherine M. Nelson
TECHNICAL SERVICES MANAGING ENGINEER

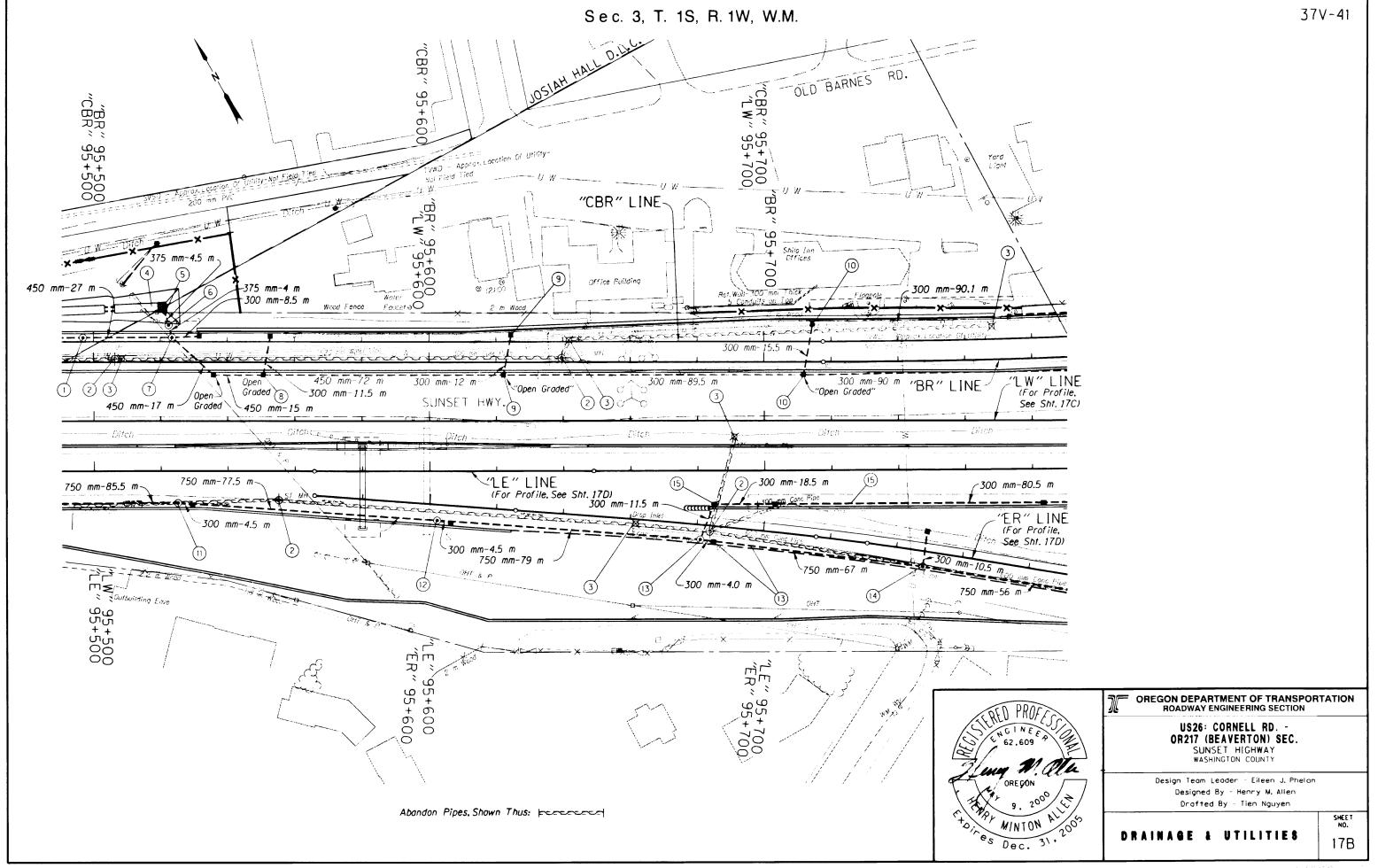
US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY


FEDERAL HIGHWAY ADMINISTRATION	PROJECT NUMBER	SHEET NO.
OREGON DIVISION	NH-OTIA-S047(052)	1

- 1 Sta. "LW" 95+309.62, Lt.
 Inst. 450 mm Storm Sew. Pipe 6.5 m
 3 m Depth
 Const. Loose Riprap Basin (Class 50) 36 MG
 Riprap Geotextile, Type 2 39 m²
 (For Details, See Sht. GHJ-9)
- 2 Sta. "LW" 95+310.11, Lt.
 Const. Manhole
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 450 mm Storm Sew. Pipe 81.0 m
 3 m Depth
- 3 Sta."LW" 95+340.17.Lt.
 Const. Type "D" Inlet
 Inst. 450 mm Storm Sew. Pipe 45.0 m
 3 m Depth
 Const. Paved End Slope 4.3 m²
- 4 Sta. "LW" 95+390.34, Lt.
 Const. Type "G-2" Inlet
 Const. Type "G-2" Open Graded HMAC Inlet 2
 Inst. 300 mm Storm Sew. Pipe 15.0 m
 1.5 m Depth
 Inst. 300 mm Storm Sew. Pipe 11.0 m
 3 m Depth
 Inst. 525 mm Storm Sew. Pipe 51.5 m
 6 m Depth
- 5 Remove Inlet
- 6 Sta. "BR" 95+441.83, Lt.
 Const. Manhole, Type Detention
 Const. Type "G-2" Inlet
 Const. Type "G-2" Open Graded HMAC Inlet
 Const. Type "D" Inlet
 Inst. 300 mm Storm Sew. Pipe 18.0 m
 1.5 m Depth
 Inst. 300 mm Storm Sew. Pipe 4.0 m
 3 m Depth
 Inst. 1800 mm Storm Sew. Pipe 55.0 m
 6 m Depth
 Detention Storage
 (For Details, See Sht. GHJ-12)
- 7 Const. Water-Quality Swale "CBR" (For Details, See Sht. GHJ-43)

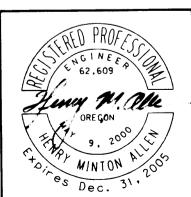
- 8 Sta. "LE" 95+268.02. Rt.
 Inst. 750 mm Storm Sew. Pipe 13.0 m
 3 m Depth
 Const. Loose Riprap Basin (Class 100) 53 MG
 Riprap Geotextile, Type 2 54 m²
 (For Details, See Sht. GHJ-9)
- 9 Sta. "LE" 95+282.15, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-2" Open Graded HMAC Inlet 2
 Inst. 300 mm Storm Sew. Pipe 19.5 m
 1.5 m Depth
 Inst. 750 mm Storm Sew. Pipe 85.0 m
 6 m Depth
- (10) Sta."LE" 95+367.07, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 5.0 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 73.0 m
 6 m Depth
- See Sht. 15A, Note 2
- (12) Sta. "LE" 95+268.02, Rt.
 Const. Loose Riprap Channel (Class 50) 673 MG
 Riprap Geotextile, Type 2 833 m²
 Dt. Exc. 560 m³
 (For Details, See Sht. GHJ-8)
- 3 Sta. "LE" 95+439.75, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const, Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 5.0 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 85.5 m
 6 m Depth
- (4) Sta. "LW" 95+308.28, Lt.
 Const. Loose Riprap Channel (Class 25) 430 MG
 Riprap Geotextile, Type 2 640 m²
 Dt. Exc. 335 m³
 (For Details, See Sht. GHJ-8)
- 15 See Sht. 17B-2, Note 1





US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY

Design Team Leoder - Eileen J. Phelan Designed By - Henry M. Allen Drafted By - Tien Nguyen

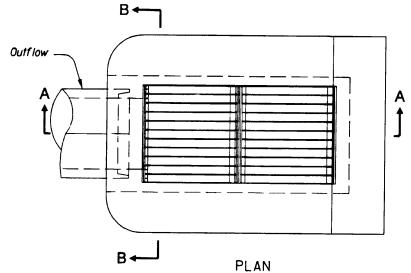

DRAINAGE & UTILITIES NOTES

- 1) Sta."CBR" 95+496.83.Lt. Const. Manhole, Large, 2700 mm Dia. Inst. 450 mm Storm Sew. Pipe - 27.0 m 3 m Depth
- (2) Remove Manhole 4
- 3 Remove Inlet 5
- (4) See Sht. 16A-2, Note 7
- (5) Sta. "CBR" 95+521.24, Lt. Inst. 375 mm Storm Sew. Pipe - 4.5 m 1.5 m Depth Const. Paved End Slope - 3 m²
- 6 Sta. "CBR" 95+522.48, Lt.
 Const. Manhole, Type Pollution Control
 Inst. 375 mm Storm Sew. Pipe 4.0 m
 3 m Depth
 (For Details, See Sht. GHJ-29)
- The standard of the standard o
- 8 Sta, "LW" 95+550.63.L1.
 Const. Type "G-2" Inlet
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 11.5 m
 3 m Depth
 Inst. 450 mm Storm Sew. Pipe 72.0 m
 3 m Depth
 Rock Exc. 12 m³
- (9) Sta."LW" 95+622.17.Lt.
 Const. Type "G-2" Inlet
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 101.5 m
 3 m Depth
 Rock Exc. 12 m³

- (10) Sta. "LW" 95+711.65, Lt.
 Const. Type "G-2" Inlet
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 105.5 m
 3 m Depth
 Rock Exc. 12 m³
- (1) Sta."LE" 95+524.99, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 4.5 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 77.5 m
 6 m Depth
- 12 Sta. "ER" 95+602.54, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 4.5 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 79.0 m
 6 m Depth
- 3 Sta, "ER" 95+681.37, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-2" Inlet
 Inst. 300 mm Storm Sew. Pipe 15.5 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 67.0 m
 6 m Depth
- 14) Sta. "ER" 95+748.54, Rt.
 Const. Manhole, Large. 1500 mm Dia.
 Const. Type "G2-MA" Inlet
 Remove Extg. Pipe 56.0 m
 Inst. 300 mm Storm Sew. Pipe 10.5 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 56.0 m
 6 m Depth
- (5) Sta. "LE" 95+684.81, Rt. Const. Type "G-2" Open Graded HMAC Inlet - 2 Inst. 300 mm Storm Sew. Pipe - 99.0 m 1.5 m Depth

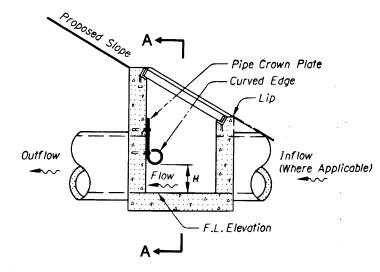
OREGON DEPARTMENT OF TRANSPORTATION ROADWAY ENGINEERING SECTION

US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY


Design Team Leader - Eileen J. Phelan Designed By - Henry M. Allen Drafted By - Tien Nguyen

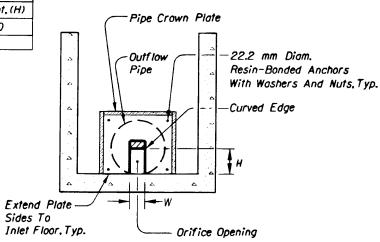
DRAINAGE & UTILITIES NOTES

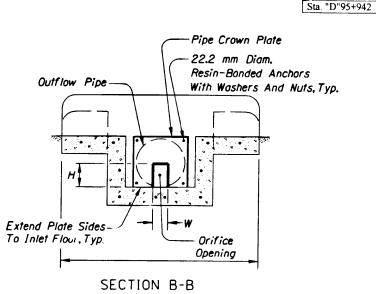
SHEET NO.


TYPE "M-E" DETENTION MODIFIED INLET

1. For Details Not Shown, See RD368 And Sht. GHJ-20 2. Curved Edge Not Required On M-E Inlet.

Fill Any Space -Between Pipe Crown Plate And Wall With Epoxy Grout Pipe Crown Plate Flow Outflow --(Low Flow) F.L. Elev. F. L. Orifice SECTION A-A "M-E" Location Elevation Width, W Height, H


TYPE "D" DETENTION MODIFIED INLET


ELEVATION

1. For Details Not Shown, See RD370 And GHJ-20

"D" A'	F.L.	Orifice			
"D" Location	Elevation	Width, (W)			
"D" Location Sta. "BR"96+214.25	93.079	190	190		

SECTION A-A

62

(m)

66.540

69.961

74.158

72.000

90.800

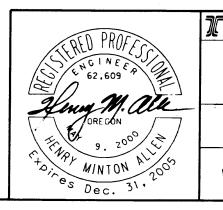
Sta. "CB" 92+305

Sta. "LE" 93+452

Sta. "MC" 93+920

Sta. "LW"94+062

- 1. Extg. Pipe Sizes, Types, And Invert Elevations Are To Be Verified In The Field.
 2. Pipe Crown Plate, Weir Plate, And Support Angles Shall Be Steel And Shall Be At Least 12.7 mm Thick, Min.
- 3. Center Curved Edge Of Pipe Crown Plate On Center Of Outflow Pipe.
 4. Embed Resin-Bonded Anchors 100 mm, Min., Into Concrete. Use High Or Low Strength Resin From ODOT's Qualified Products List, Suitable For Wet Or Submerged Locations.
- 5. For Resin-Bonded Anchors, Use Steel Threaded Rods.

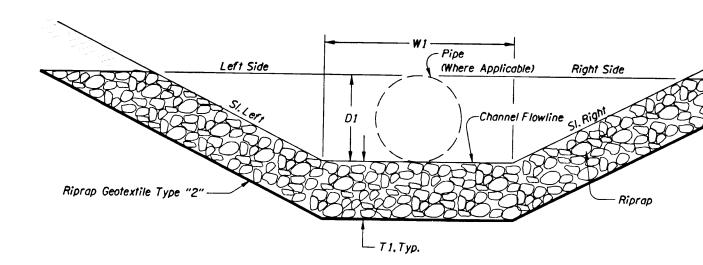

(mm)

150

150

- 6. Anchors Shall Be 25 mm, Min., Inside Pipe Crown Plate Edges.
 7. Hole Diameters In The Plates And Angles For The Anchors And Bolts Shall Be 3.2 mm Larger Than The Anchor Or Bolt Diameters.
- 8. Metal Plates And All Hardware Shall Be Stainless Steel Or, Hot-Dipped Galvanized.
- 9. The Curved Edge On The Pipe Crown Plate May Be Achieved By Bending The Plate Edge. Or By Welding A Section Of 100 mm Pipe To The Bottom Edge Of The Plate, Or Other Durable Device That Produces A Rounded Edge. To Be Approved By The Engineer.

10. All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.


OREGON DEPARTMENT OF TRANSPORTATION GEO / HYDRO SECTION

US26: CORNELL RD. OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

Project Leader - Naveen Chandra Designed By - Henry M. Allen Drafted By - Martin G. Casillas

WATER QUALITY DETAILS

SHEET NO. GHJ-5

LOOKING DOWNSTREAM
RIPRAP CHANNEL, TYPE 1

Extg. Ground

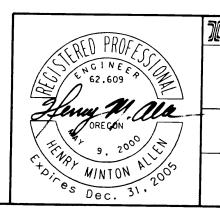
Right 600

Channel Flowline

Side

Channel Flowline

T1, Typ.

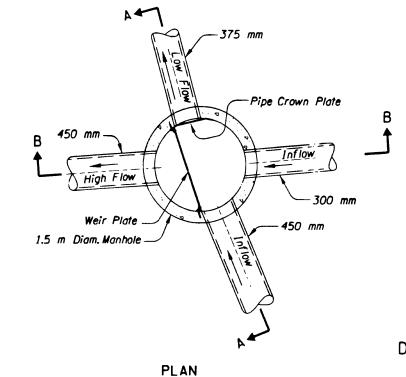

LOOKING DOWNSTREAM

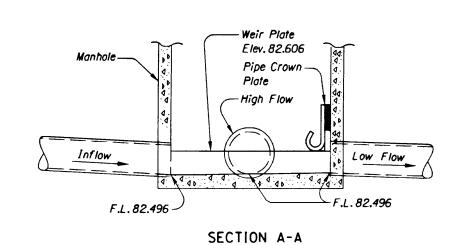
RIPRAP CHANNEL, TYPE 2

Notes: 1) U-S= Upstream, D-S= Downstream

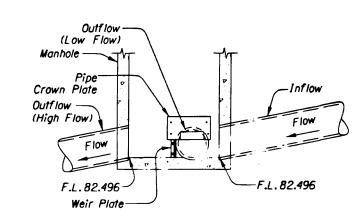
Location Upstream End	Type, (1 Or 2)	Length,	W1.	D1.	T1.	F.L.U-S	1	Side	slope	Riprap Class	Outlet Structure	
Ct- #CD#00 + 007 70 + +		(m)		-		(m)	(m)	Left	Right	C1033		
Sta. "CB"92+287.79. Lt.	1	7.5	0.6	450	300	66.192	64.839	1:2	1:2	25	Extg. Inlet	
"CB"92+381.62, Lt	1	14.8	0.6	300	300	68.864	67 .4 00	1:3	1:3	25	Flow Spreader	
"LW"92+890.69, L1	2	10.5	0.6	450	450	70.875	69.800	1:2	1:2	25	Wetlands	
"LW"92+964.84, L1	1	11	0.6	450	450	68.814	68.364	1:2	1:2	25	Flow Spreader	
"LE"93+407.59, Rt.	1	10.3	0.6	300	450	70.073	C9.600	1:4	1:4	25	Tributary 3 Wetlands	
"LE"93+491.375, Rt.	1	10.3	0.6	300	450	70.073	69.600	1:4	1:4	25	Tributary 3 Wetlands	
"LW"94+030.08. Lt	1	3.5	0.9	300	450	72.670	72.210	1:2	1:2	25	Swale "MA1"	
"LW"94+546.19, L1	2	92.1	1.2	600	450	65.700	65.300	1:2	1:2	25	Exta. Ground	
"LW"94+638.35, Lt	2	31.5	1.2	450	450	66.490	66.400	1:2	1:2	25	Extg. Ground	
"LW"94+487.16, Lt	2	3	1.2	600	525	65.460	65.447	1:2	1:2	50	Riprap Channel	
"LE"95+268.02, Rt.	1	122	1.8	600	525	71.350	59.600	1:2	1:2	50	Johnson Creek	
"LW"95+308.28, Lt	1	122.5	1.2	450	450	69.800	60.200	1:2	1:2	25	Johnson Creek	
"LW"95+456.20, L1	1	3	2.4	150	450	82.005	81.760	1:4	1:4	25	Downstream Swale	
"LW"95+474.20, L1	1	3	2.4	150	450	81.500	80. 96 0	1:4	1:4	25	Downstream Swale	
"LW"95+490.20, L1	1	3	2.4	150	450	80.700	80.400	1:4	1:4	25	Downstream Swale	
"LW"95+506.20, Lt	1	3	2.4	150	450	79.900	79.800	1:4	1:4	25	Downstream Swale	
"D"95+963.17. Rt	2	26.5	1.2	450	450	90.950	90.800	1:2	1:2	25	ME Inlet	
"D"95+973.85, Rt	1	10	2.4	300	450	93.370	90.950	1:2	1:2	25	Riprap Basin	
"SC"96+034.54, Rt	1	5	0.6	300	450	101.800	101.280	1:4	1:4	25	Riprap Channel	
"BR"96+068.63, Rt	1	30	0.6	300	450	101.650	101.200	1:4	1:4	25	Inlet	
"NW"96+098.56, Lt	1	3	1.6	300	450	104.241	104.200	1:4	1:4	25	Flow Spreader	
"BR"96+103.82. Lt	1	3.5	1.5	450	750	94.000	93.300	1:2	1:2	350	Riprap Basin	
"BR"96+115.61, L1	2	37	1.5	600	450	93.300	93.100	1:2	1:2	25	ME Inlet	

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.

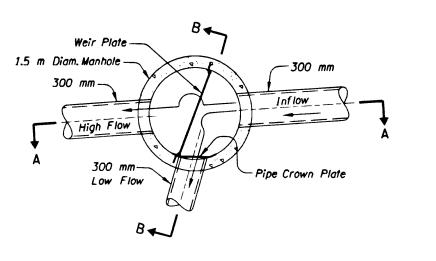

OREGON DEPARTMENT OF TRANSPORTATION GEO / HYDRO SECTION

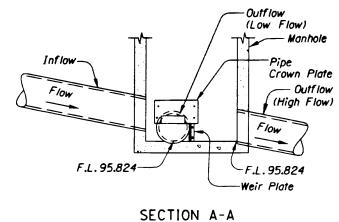

US26: CORNELL RD. -OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

Project Leader - Naveen Chandra Designed By - Henry M. Allen Drafted By - Martin G. Casillas

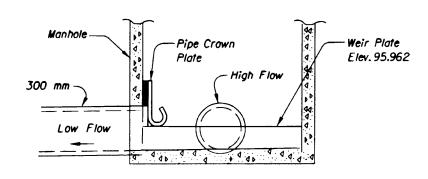

WATER QUALITY DETAILS

SHEET NO.

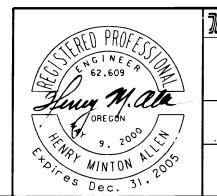



For Details Not Shown, See Sht. GHJ-20
DIVERSION MANHOLE "HIGH-LOW" LOW FLOW STRAIGHT THROUGH
Sta. "CBR"95+523, Lt.

SECTION B-B



PLAN

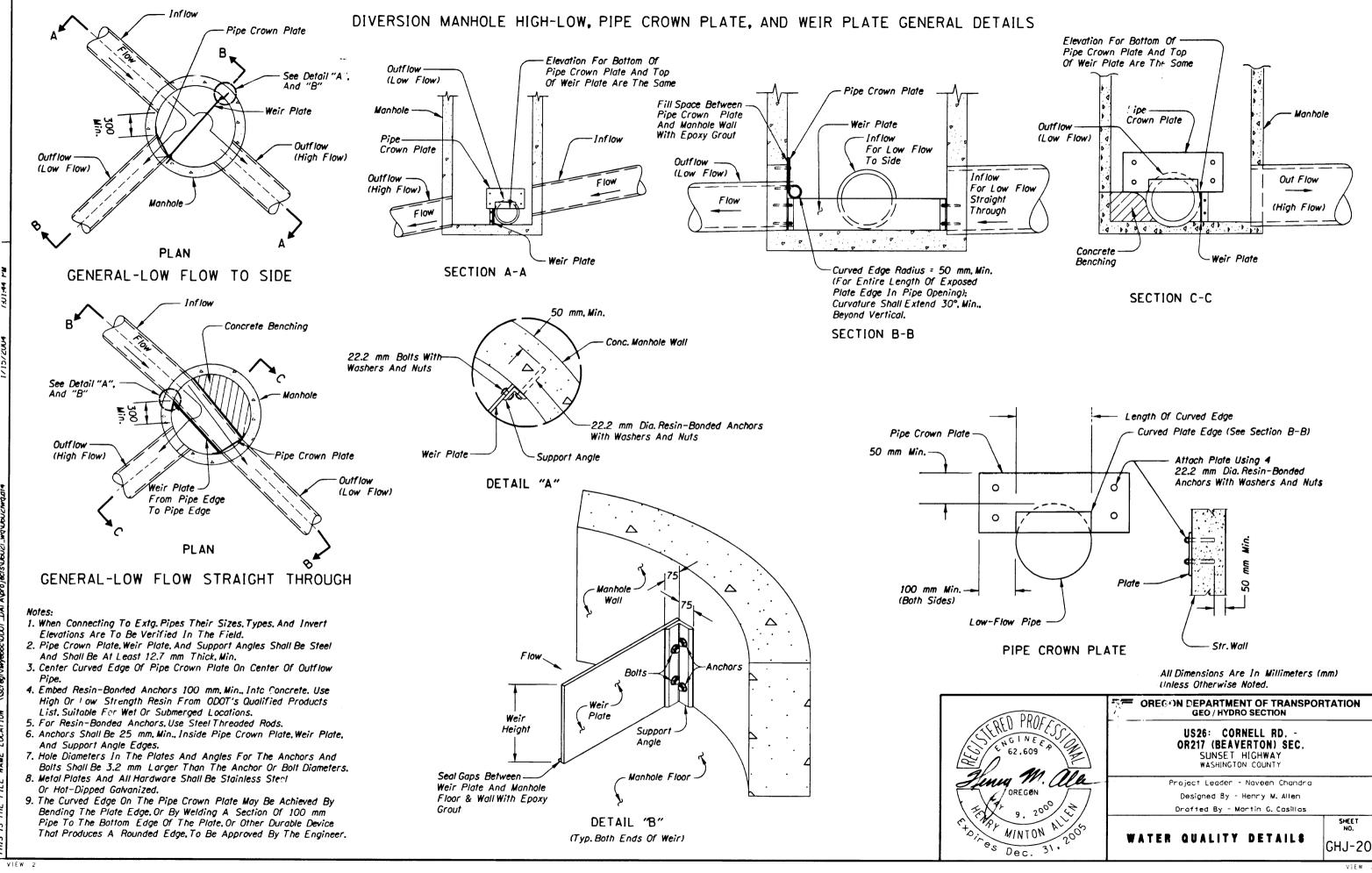

For Details Not Shown, See Sht. GHJ-20
DIVERSION MANHOLE "HIGH-LOW", LOW FLOW TO SIDE

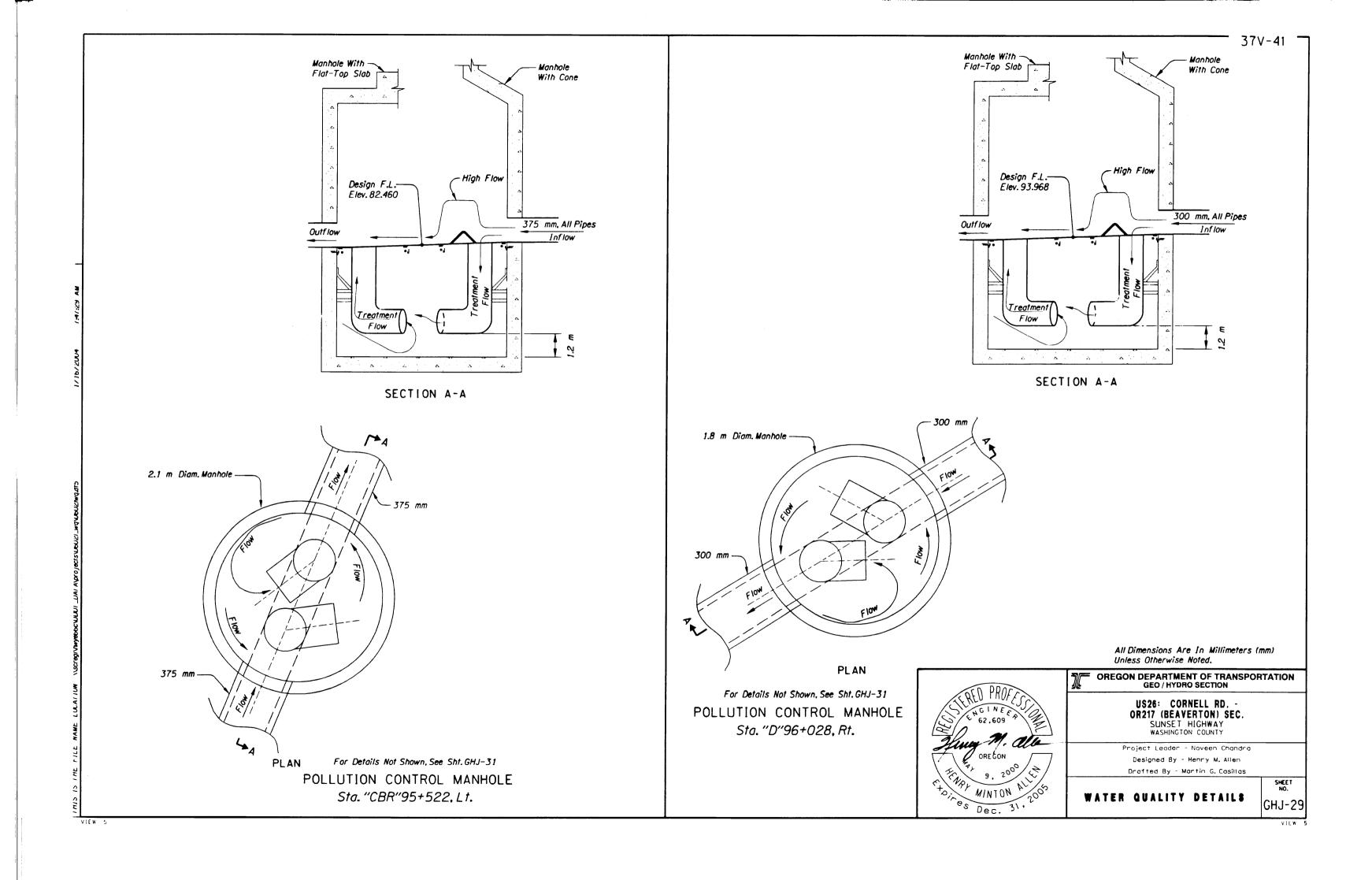
Sta. "D"96+042, Rt.

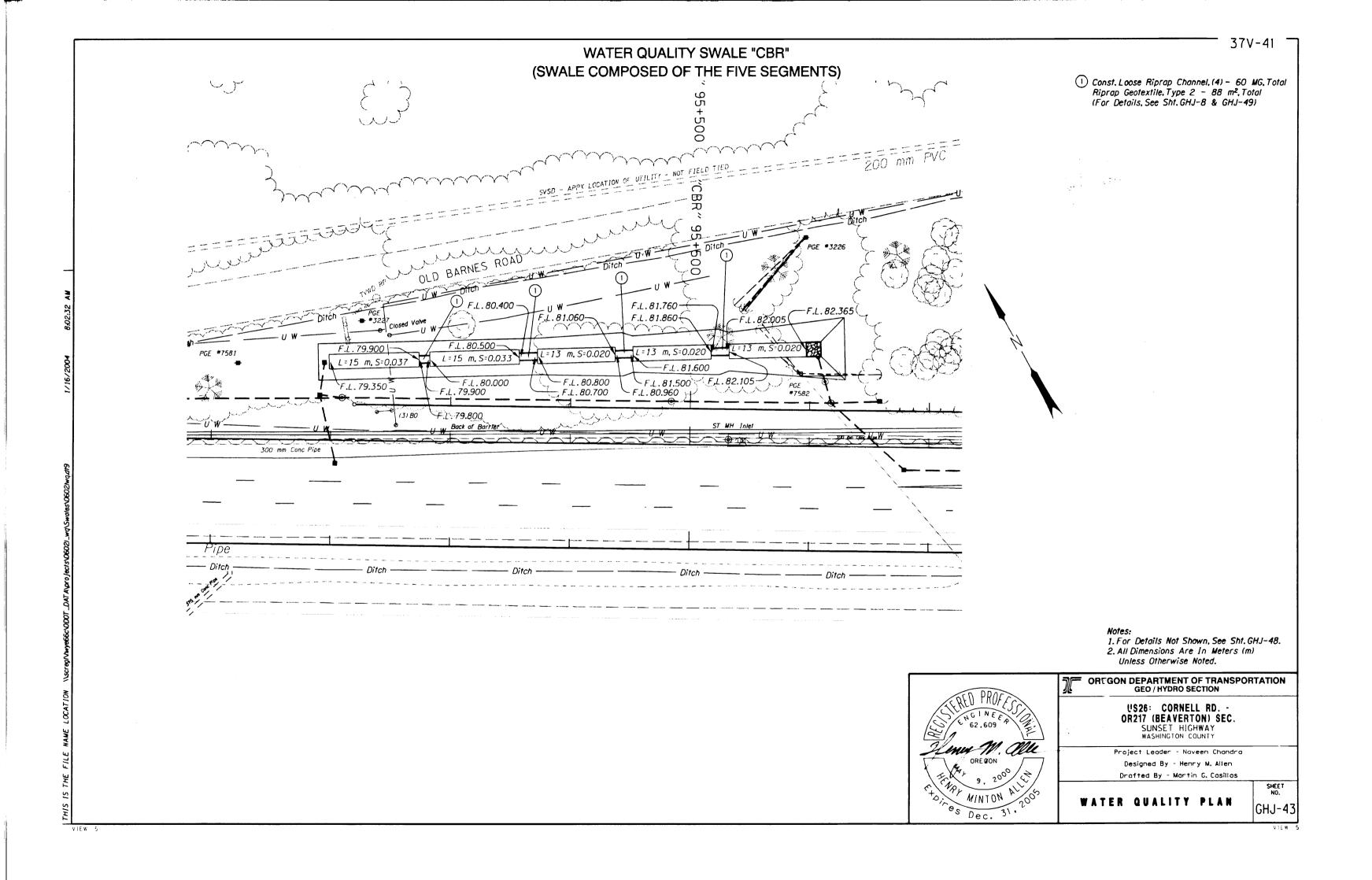
SECTION B-B

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.

US26: CORNELL RD OR217 (BEAVERTON) SEC. SUNSET HIGHWAY					
OR217 (BEAVERTON) SEC	•				


Project Leader - Noveen Chandra


Designed By - Henry M. Allen


Orafted By - Martin G. Casillas

WATER QUALITY DETAILS

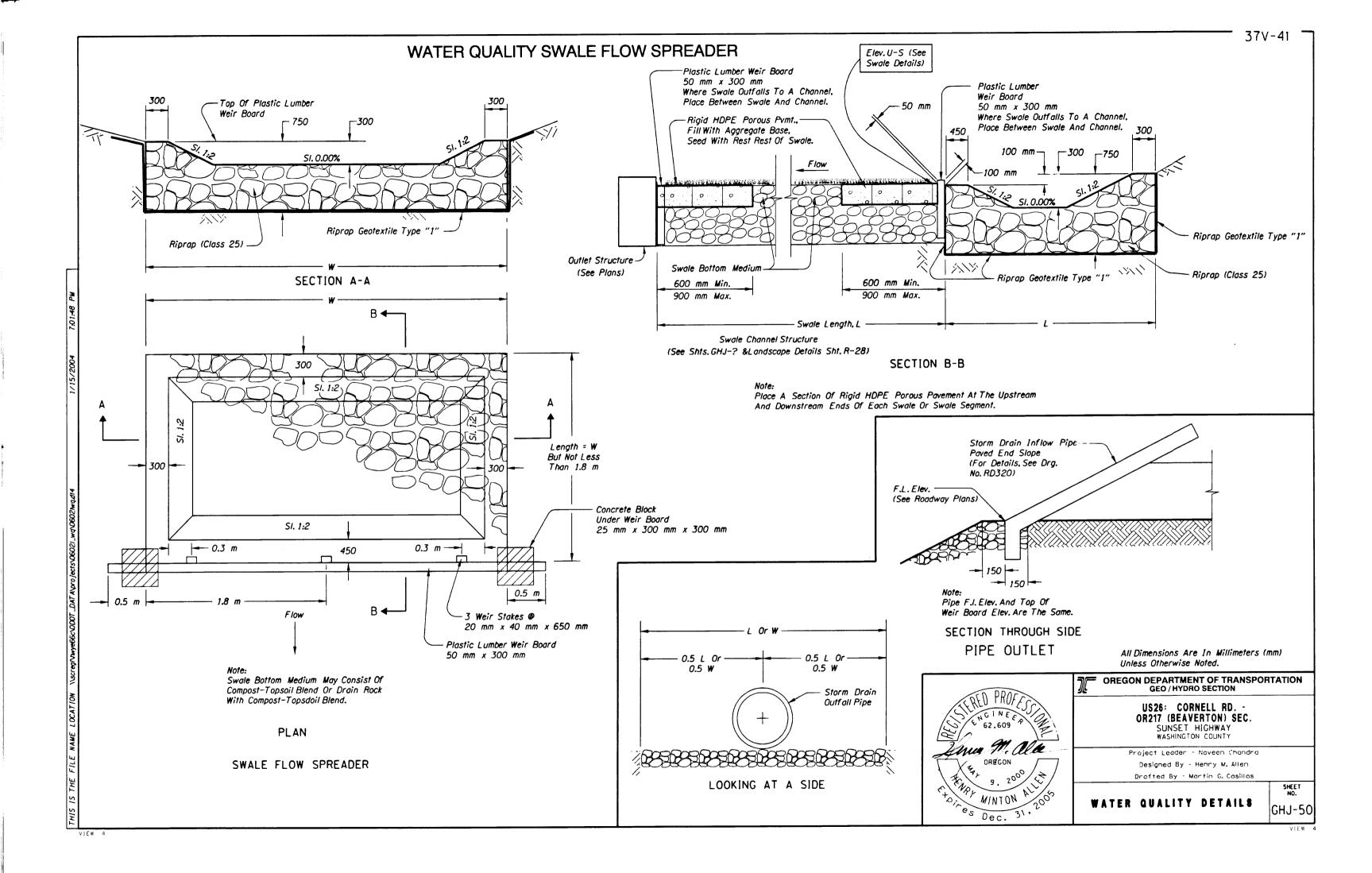
GHJ-18

WATER QUALITY SWALES SITE SPECIFIC INFORMATION

Notes:
1) U-S= Upstream, D-S= Downstream
2) See Site Plans For Pipe Inverts At Inlets.
3) "C-T Blend" = Compost-Topsoil Blend,
"Rock+C-T" = Drain Rock With Compost-Topsoil Blend.

	L,	W,	F.L. U-S,	F.L. D-S,	Long. Slope,	Centerline Curve Radius,		Swale Side	eslopes		Freeboard Depth,	Swale Bottom	No. Under- Drain	Under Drain Tie-In	Swale Outlet
Swale ID	m	m	m	m	%	m	U-S	Left	Right	D-S	m	Medium	Segments	Location	Facility
WCW	340	1.2	See GHJ-32	See GHJ-32	Varies	None	1:3	1:4	1:6	1:4	0.3	Rock+C-T	2	"G-2MA" Mod. Inlet	"G-2MA" Mod. Inlet
WCE	322	2.4	See GHJ-33	See GHJ-33	Varies	None	1:20	1:6	1:4	1:18	0.3	Rock+C-T	2	"G-2MA" Mod. Inlet	"G-2MA" Mod. Inlet
WC1	82	2.4	68.062	66.543	1.85	None	1:4	1:3	1:6	1:4	0.3	C-T Blend	2	"D" Mod. Inlet	"M-E" Mod. Inlet
WC2A	30	0.6	70.673	70.197	1.50	None	1:2	1:2	1:2	1:2	0.3	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2B	474	0.7	70.815	70.637	0.32	None	1:3	1:3	1:3	1:3	0.3	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2C	37	0.8	71.042	70.839	0.55	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2D	41	0.9	72.556	71.634	Varies	None	1:5	1:5	1:5	1:5	0.3	Rock+C-T	11	"D" Mod. Inlet	"D" Mod. Inlet
WC3A	50	2.4	70.195	69.961	0.5	None	1:4	Var.	Var.	1:4	.8	C-T Blend	2	"D" Mod. Inlet	"V"-Bottom Ditch
WC3B	50	2.4	74.408	74.158	0.5	80	1:4	1:4	1:6	1:4	0.45	C-T Blend	2	"D" Mod. Inlet	"M-E" Mod. Inlet
MA1	31.5	2.4	72.160	72.000	0.51	None	1:3	1:3	Var.	1:6	0.45	C-T Blend	None	N.A.	"M-E" Mod. Inlet
CBR	See GHJ-43	2.4	See GHJ-43	See GHJ-43	Varies	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	"D" Inlet
<u>N1a</u>	23	2.4	102.150	102.035	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A	Riprap Basin
N1b	12.3	2.4	101.812	101.750	0.5	25	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel
N2	36	2.4	102.750	102.570	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N3	36	2.4	103.350	103.170	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N4	36	2.4	103.850	103.670	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N5a	12.6	2.4	104.404	104.341	0.5	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel
N5b	24	2.4	104.150	104.030	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
S1	36	2.4	93.550	93.370	0.5	20, Each	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.



OREGON DEPARTMENT OF TRANSPORTATION GEO / HYDRO SECTION

US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY

Project Leader - Noveen Chondro Designed By - Henry M. Allen Drafted By - Martin G. Casillas

WATER QUALITY DETAILS

