OPERATION & MAINTENANCE MANUAL

DFI No. D00165 Facility Type: Water Quality Biofiltration Swale

JUNE, 2011

INDEX

1.	IDENTIFICATION	1
2.	FACILITY CONTACT INFORMATION	1
3.	CONSTRUCTION	1
4.	STORM DRAIN SYSTEM AND FACILITY OVERVIEW	2
5.	FACILITY HAZ MAT SPILL FEATURE(S)	6
6.	AUXILIARY OUTLET (HIGH FLOW BYPASS)	6
7.	MAINTENANCE REQUIREMENTS	6
8.	WASTE MATERIAL HANDLING	7

APPENDIX A:	Operational Plan and Profile Drawing(s)
APPENDIX B:	ODOT Project Plan Sheets

1. Identification

Drainage Facility ID (DFI):	D00165
Facility Type:	Water Quality Biofiltration Swale
Construction Drawings:	(V-File Number) 37V-041
Location:	District: 2B (Old 2A)
	Highway No.: 047
	Mile Post: 67.17/67.19 (beg./end)
	Description: This facility is located of

Description: This facility is located on the northeast quadrant of the US 26 (047) and Murray Blvd. overcrossing - between the westbound off ramp and the westbound travel lanes. Access to this facility can be obtained from the off ramp.

2. Facility Contact Information

Contact the Engineer of Record, Region Technical Center, or Geo-Environmental's Senior Hydraulics Engineer for:

- Operational clarification
- Maintenance clarification
- Repair or restoration assistance

Engineering Contacts:

Region Technical Center Hydro Unit Manager

Or

Geo-Environmental Senior Hydraulics Engineer (503) 986-3365.

3. Construction

Engineer of Record:	ODOT Designer – Region 1 Tech Center, Henry Minton Allen, (503) 731-8200
Facility construction:	2004
Contractor:	Mowat Construction Company

4. Storm Drain System and Facility Overview

A water quality swale is a flat-bottomed open channel designed to treat stormwater runoff from highway pavement areas. This type of facility is lined with grass. Treatment by trapping sedimentation occurs when stormwater runoff flows through the grass.

The swale, approximately 103 feet in length, is located on the northeast quadrant of the Murray Blvd and US 26 (Hwy 047) interchange. The swale is located between the off ramp and the highway itself. Access to the swale can be obtained from the off ramp via a gravel access road along the north side of the facility.

Stormwater runoff from the Murray Blvd Interchange and the off ramp is collected by a series of inlets and conveyed through a 15-inch storm pipe. A high-low split flow manhole is located on the east side of the off ramp. The swale is considered an off-line structure as only the water quality flow is directed to the swale. After the split flow manhole the stormwater is pretreated with a pollution control manhole before entering the swale. After treatment through the swale, the water is discharged into an outlet control structure. The outlet control structure discharges into a 12-inch storm pipe upsizing to an 18-inch storm pipe that drains towards the east.

A. Maintenance equipment access:

The facility can be accessed for maintenance on the north side from the off ramp from westbound US 26 (Hwy 047). Refer to Photo 6 for a photo of the access road.

B. Heavy equipment access into facility:

☑ Allowed (no limitations)
 ☑ Allowed (with limitations)
 ☑ Not allowed

- C. Special Features:
 - □ Amended Soils
 - □ Porous Pavers
 - □ Liners
 - □ Underdrains

Photo 1: Water quality swale looking towards the west at the Murray Blvd overpass on US 26.

Photo 2: Water quality swale looking towards the west.

Photo 3: Water quality swale looking towards the west.

Photo 4: Water quality swale looking towards the west.

Photo 5: Outlet control structure of water quality swale.

Photo 6: Access road looking north towards the intersection of the US 26 off ramp and Murray Road.

5. Facility Haz Mat Spill Feature(s)

The water quality biofiltration swale can be used to store a volume of liquid by blocking the 12-inch diameter outlet pipe located at the outlet of the water quality biofiltration swale. This pipe is noted as point E in the Operational Plan and shown in Photo 5.

6. Auxiliary Outlet (High Flow Bypass)

Auxiliary Outlets are provided if the primary outlet control structure can not safely pass the projected high flows. Broad-crested spillway weirs and over flow risers are the two most common auxiliary outlets used in stormwater treatment facility design. The auxiliary outlet feature is either a part of the facility or an additional storm drain feature/structure.

The auxiliary outlet feature for this facility is:

 \boxtimes Designed into facility

A high-low split flow manhole is located prior to the facility. The facility is considered an offline structure and should not receive high flows as a result. The high flow bypass, designed into the swale's outlet control structure, includes a secondary inlet/outlet device. In the event runoff flowing to the swale exceeds the primary outlet for the swale, the water level will rise and exit through the secondary inlet/outlet part of the structure.

 \Box Other, as noted below

7. Maintenance Requirements

Routine maintenance table for non-proprietary stormwater treatment and storage/detention facilities have been incorporated into ODOT's Maintenance Guide. These tables summarize the maintenance requirements for ponds, swales, filter strips, bioslopes, and detention tanks and vaults. Special maintenance requirements in addition to the routine requirements are noted below when applicable.

The ODOT Maintenance Guide can be viewed at the following website:

http://www.oregon.gov/ODOT/HWY/OOM/MGuide.shtml

Maintenance requirements for proprietary structures, such as underground water quality manholes and/or vaults with filter media are noted in Appendix C when applicable.

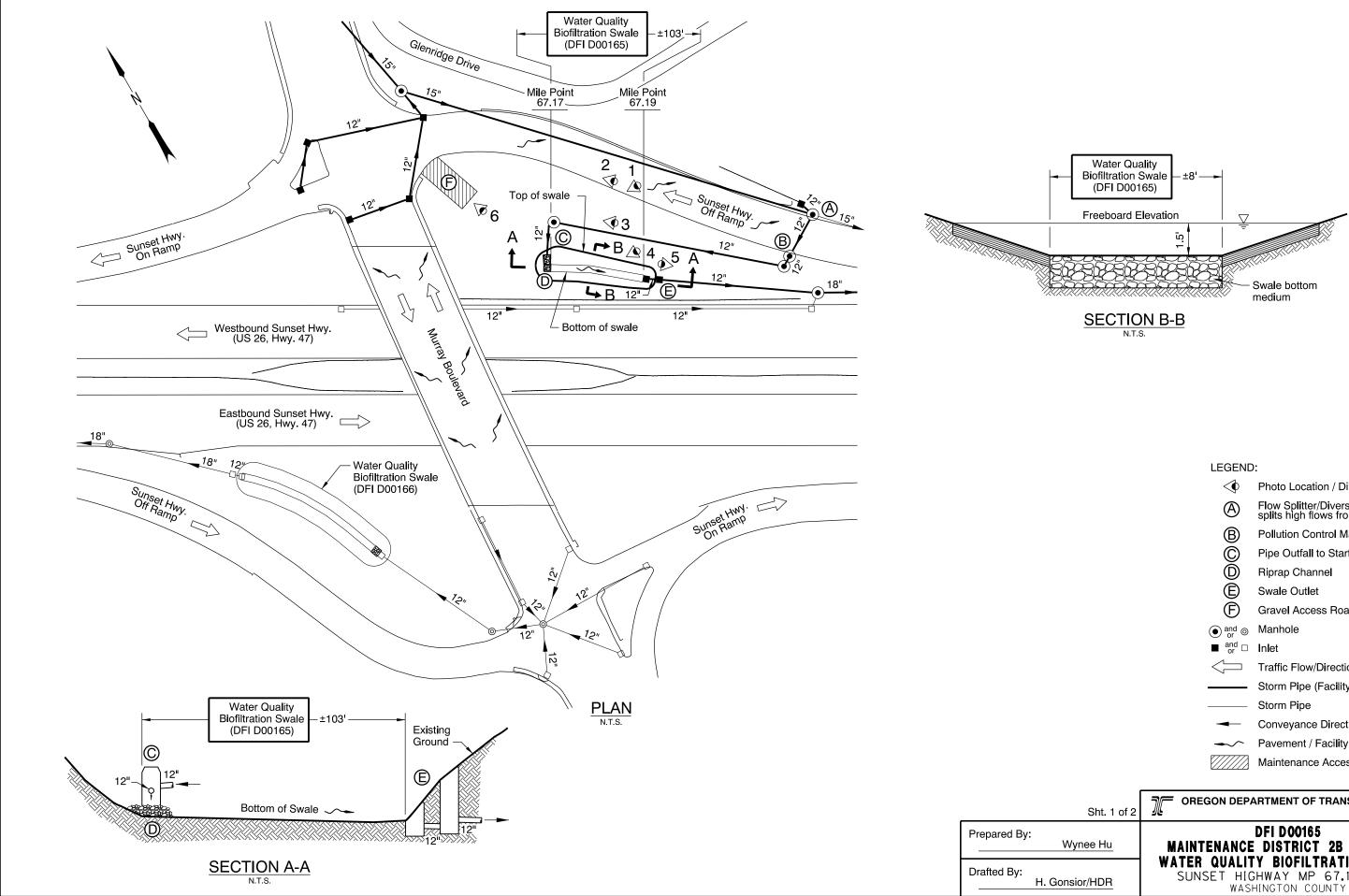
The following stormwater facility maintenance table (See ODOT Maintenance Guide) should be used to maintain the facility outlined in this Operation and Maintenance Manual or follow the Maintenance requirements outlined in Appendix C when proprietary structure is selected below:

- ☑ Table 1 (general maintenance)
- \Box Table 2 (stormwater ponds)
- ☑ Table 3 (water quality or biofiltration swales)
- □ Table 4 (water quality filter strips)
- □ Table 5 (water quality bioslopes)
- □ Table 6 (detention tank)
- □ Table 7 (detention vault)
- □ Appendix C (proprietary structure)
- □ Special Maintenance requirements:

Note: Special maintenance Requirements Require Concurrence from ODOT SR Hydraulics Engineer.

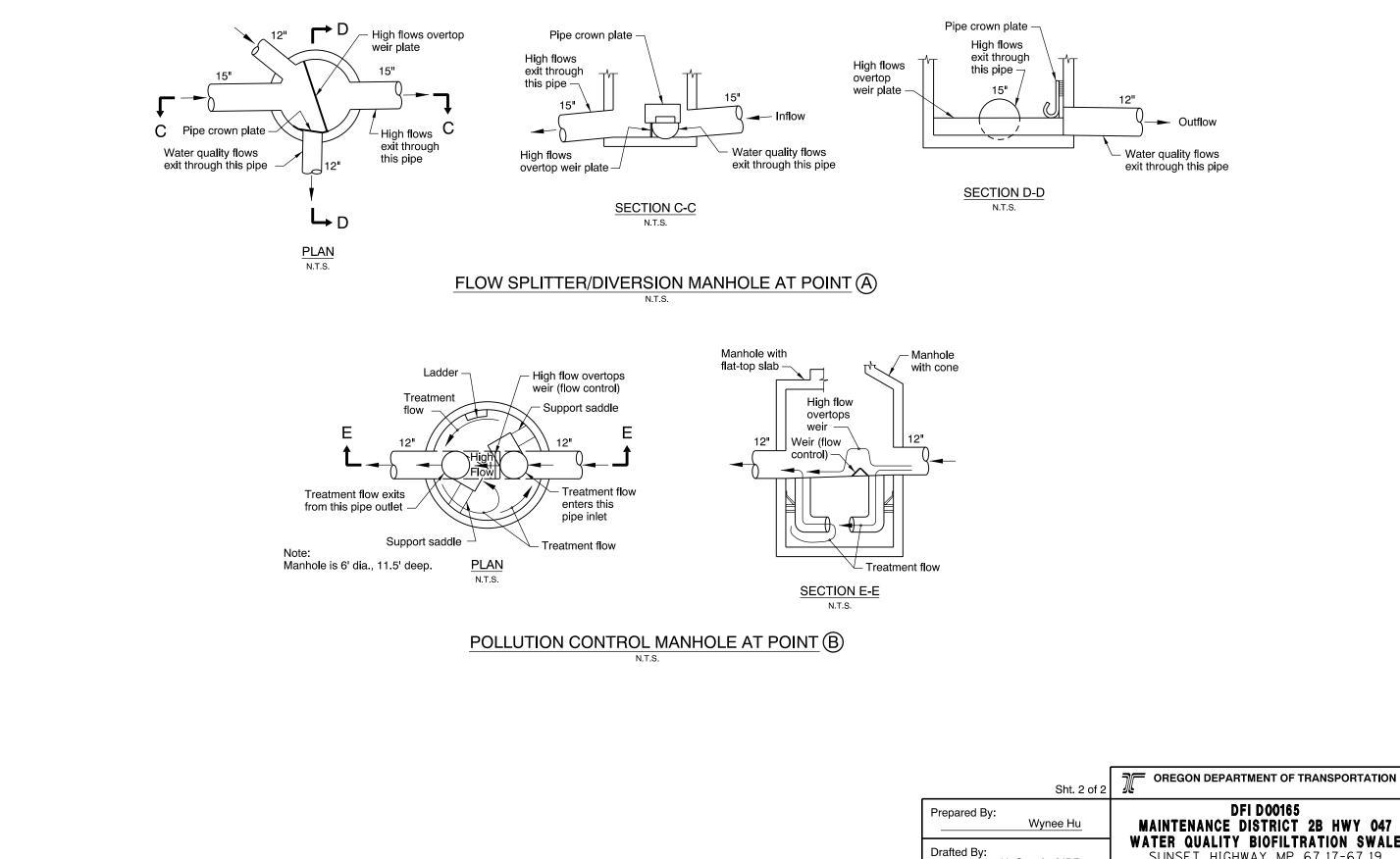
8. Waste Material Handling

Material removed from the facility is defined as waste by DEQ. Refer to the roadwaste section of the ODOT Maintenance Yard Environmental Management System (EMS) Policy and Procedures Manual for disposal options: <u>http://egov.oregon.gov/ODOT/HWY/OOM/EMS.shtml</u>


Contact any of the following for more detailed information about management of waste materials found on site:

ODOT Clean Water Unit	(503) 986-3008
ODOT Statewide Hazmat Coordinator	(503) 229-5129
ODOT Region Hazmat Coordinator	(503) 731-8304
ODEQ Northwest Region Office	(503) 229-5263

Appendix A


Content:

• Operational Plan and Profile Drawing(s)

Z:\Hydraulics\Hydraulics OM\Completed_Facility_Files\Dist_2B\Hwy_047\2B_047_D00165\Operational Plan\DFL_D00165.dgn :: Sheet 1/16/2014 8:33:33 AM hwyr33e

	\triangleleft	Photo Location / Direction
	A	Flow Splitter/Diversion Manhole splits high flows from low flows
	B	Pollution Control Manhole
		Pipe Outfall to Start of Swale
	C D E	Riprap Channel
	E	Swale Outlet
	Ē	Gravel Access Road
	● and ◎	Manhole
	■ and □ or	Inlet
	$\langle \square$	Traffic Flow/Direction
		Storm Pipe (Facility)
		Storm Pipe
	-	Conveyance Direction
		Pavement / Facility Flow Path
		Maintenance Access
nt. 1 of 2		ARTMENT OF TRANSPORTATION
<u>Hu</u>	MAINTENANCE	DFID00165 District 2B Hwy 047
DR	WATER QUALIT Sunset Hig Wash	

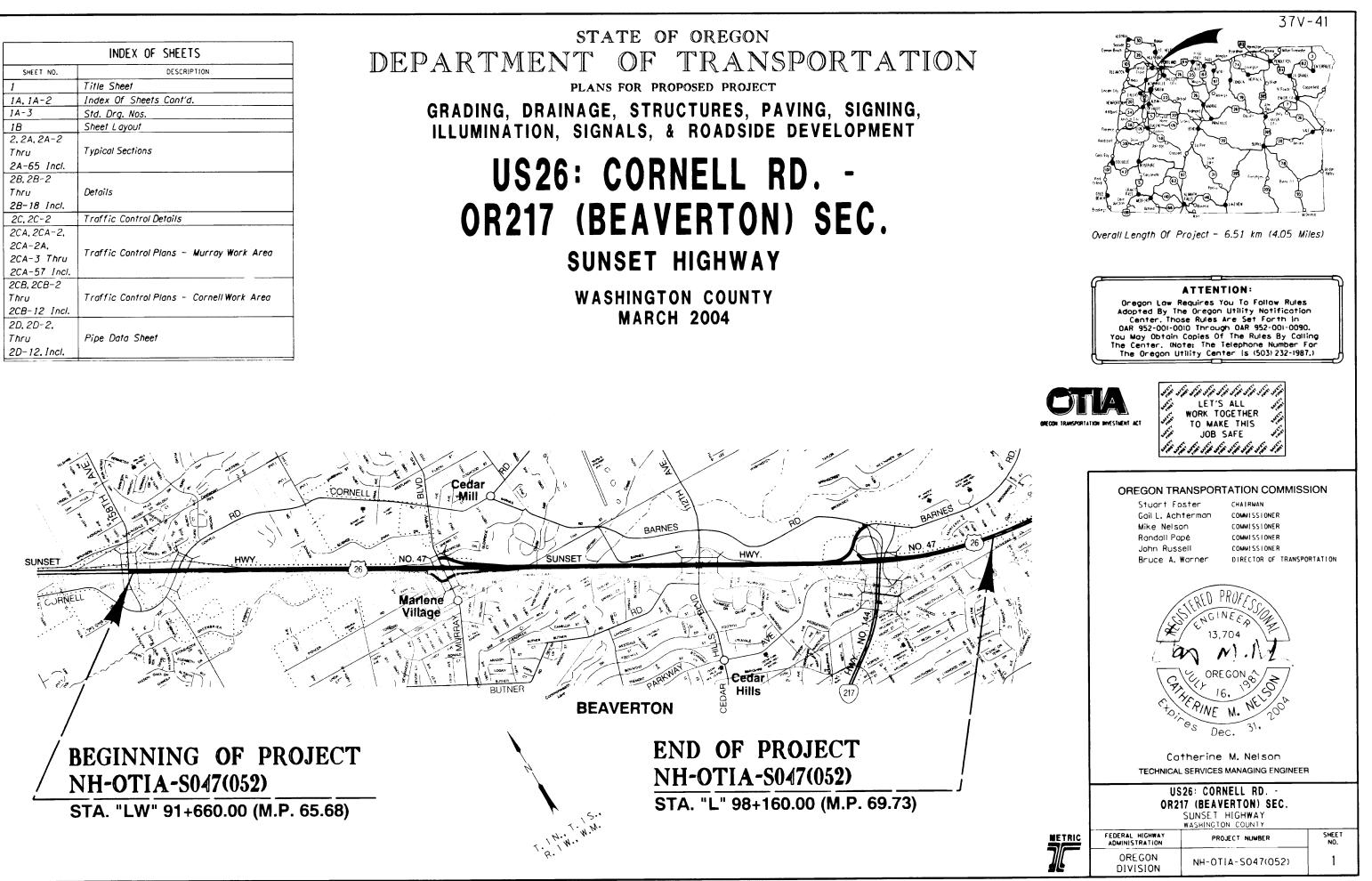
hwyr33e

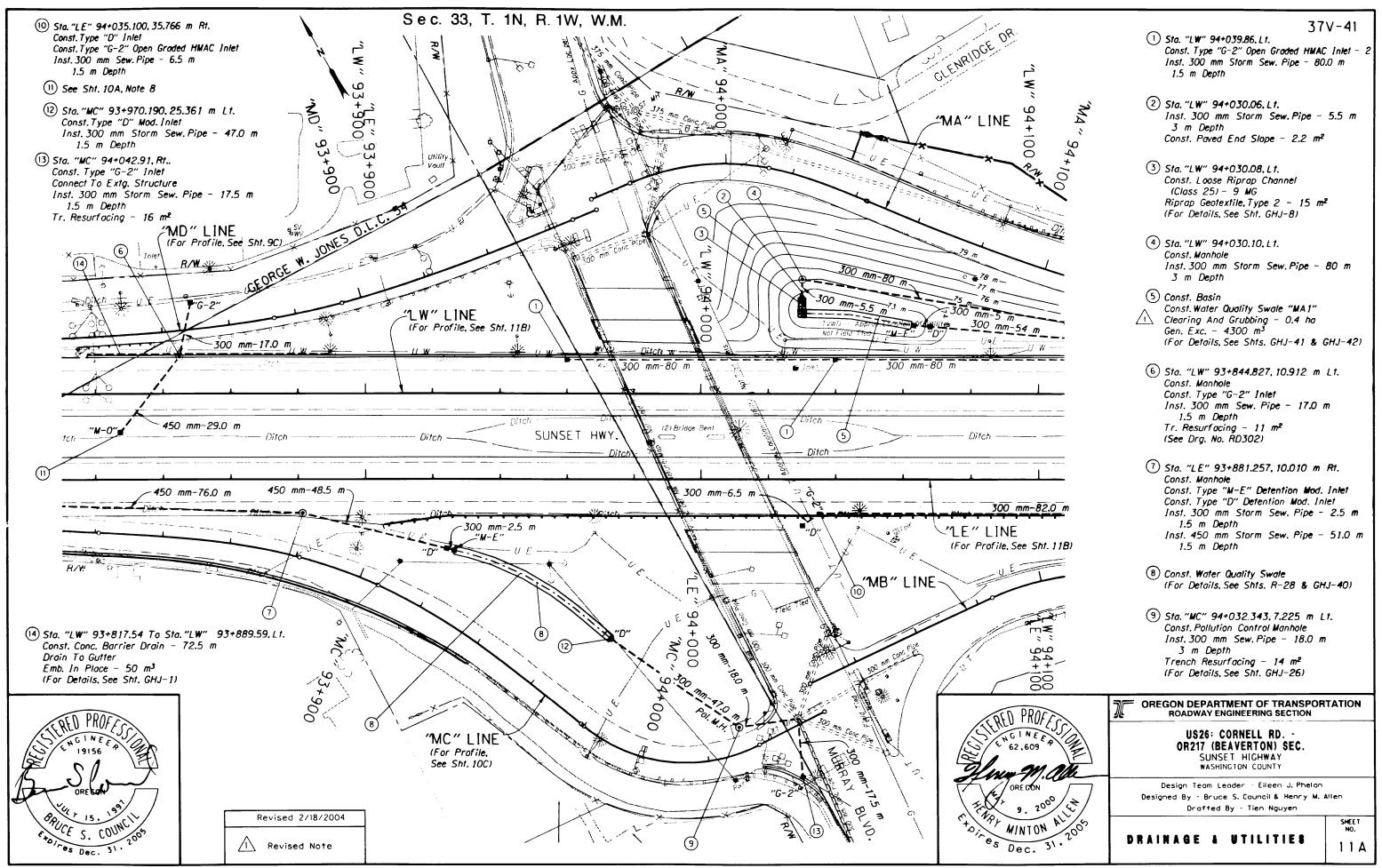
DFI_D00165_2.dgn

Sht. 2 of 2	OREGON DEPARTMENT OF TRANSPORTATION
/: Wynee Hu	DFI D00165 Maintenance district 2B Hwy 047
H. Gonsior/HDR	WATER QUALITY BIOFILTRATION SWALE SUNSET HIGHWAY MP 67.17-67.19 WASHINGTON COUNTY

Appendix B

Content:

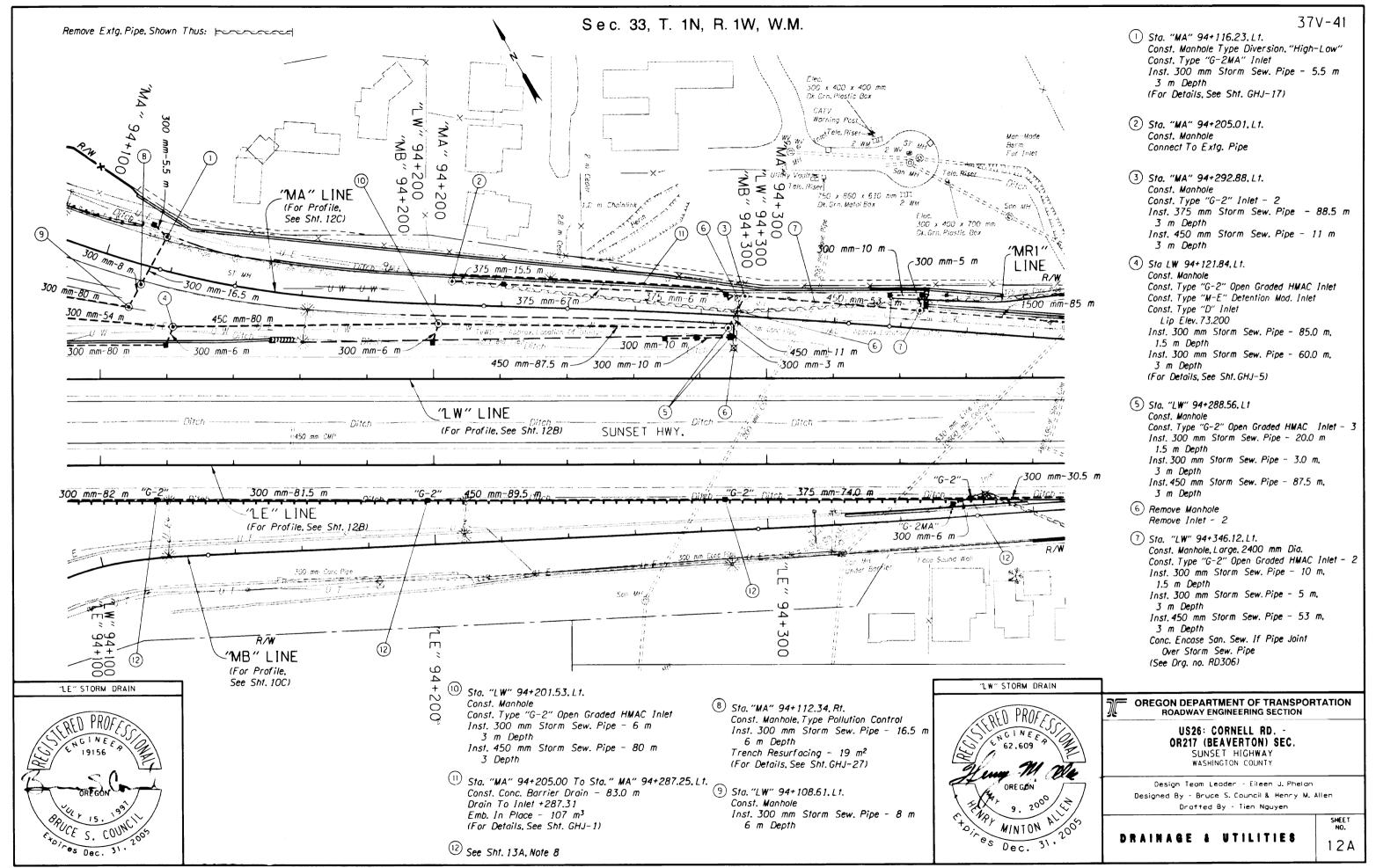

- ODOT Project Plan Sheets
 - Cover/Title Sheet
 - Water Quality/Detention Plan Sheets
 - Other Details


INDEX OF SHEETS									
SHEET NO.	DESCRIPTION								
1	Title Sheet								
1A. 1A-2	Index Of Sheets Cont'd.								
1A-3	Std. Drg. Nos.								
1B	Sheet Layout								
2.2A.2A-2									
Thru	Typical Sections								
2A-65 Incl.									
2B, 2B-2									
Thru	Details								
2B-18 Incl.									
20.20-2	Traffic Control Details								
2CA, 2CA-2,									
2CA-2A.	 Traffic Control Plans - Murray Work Area								
2CA-3 Thru	Tharne connormans - Murray Work Area								
2CA-57 Incl.									
2CB . 2CB-2									
Thru	Traffic Control Plans - Cornell Work Area								
2CB-12 Incl.									
2D.2D-2.									
Thru	Pipe Data Sheet								
2D-12.Incl.									

PE000656/C0341403-01

US26: CORNELL RD. -**OR217 (BEAVERTON) SEC.** SUNSET HIGHWAY

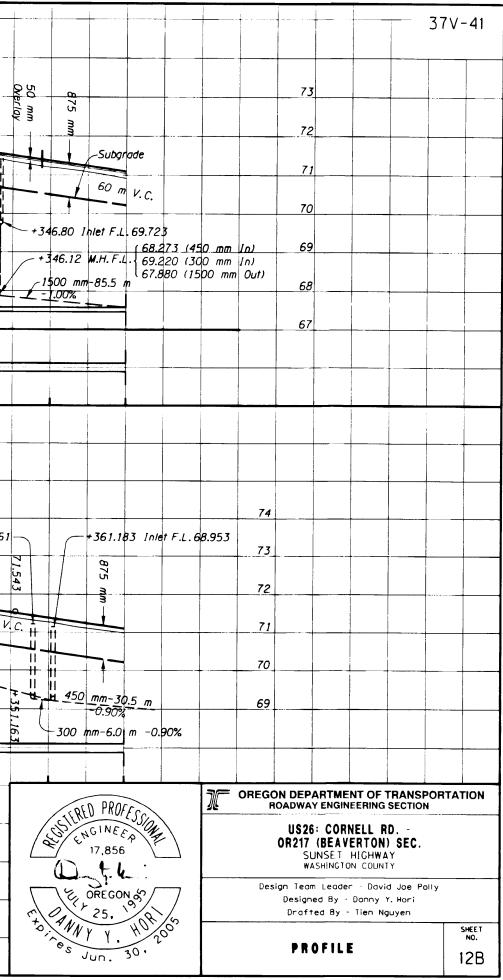
MARCH 2004


sc-salemne -i hwye0in 0001_0ATA:projects 13459_Connell_217_13459ct1.pl5 2_18_2004_12:49:58_FM hwye0in

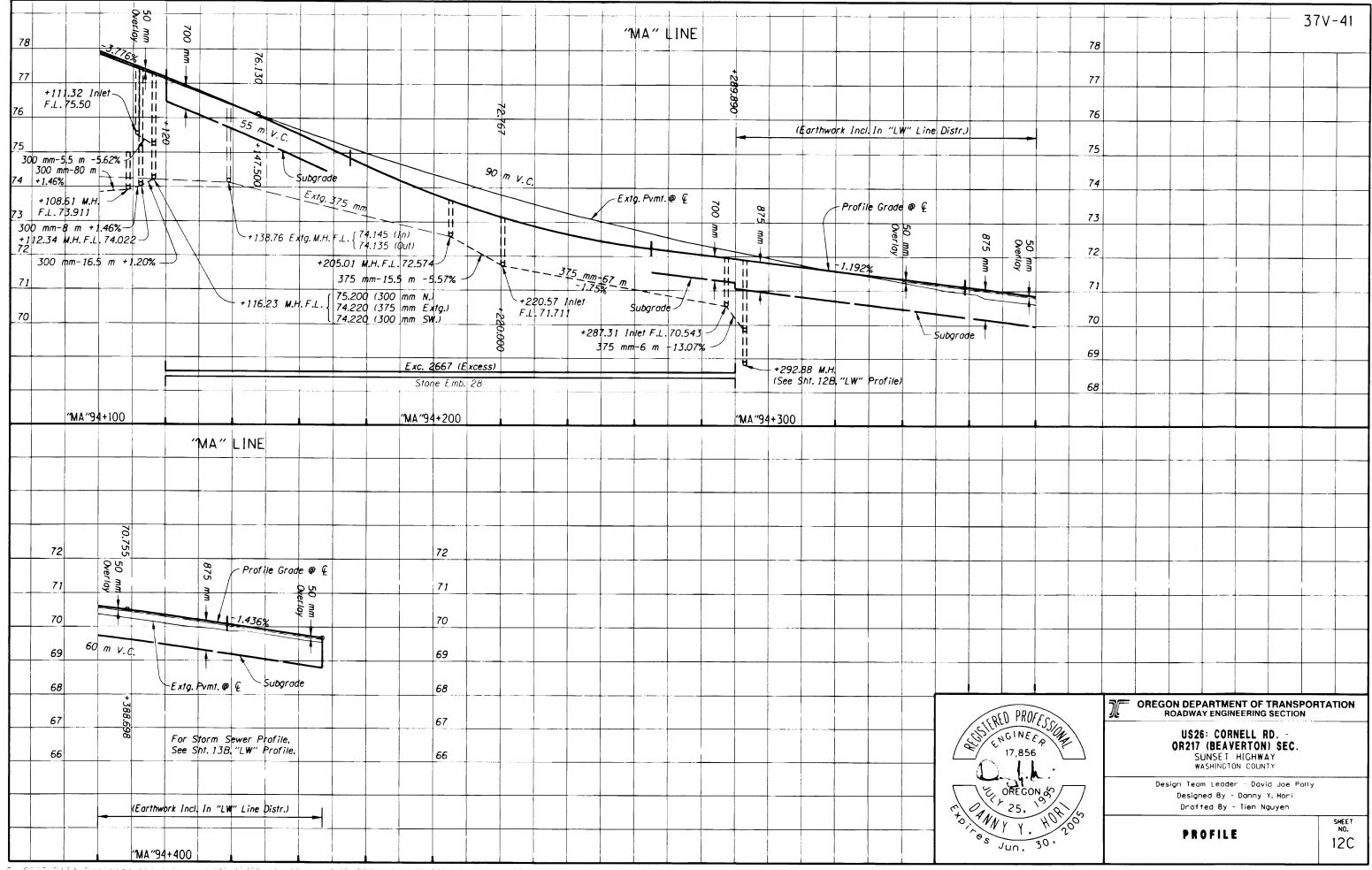
1:1000 - 2

875 m		76.613 ″L W″	LINE	
	Profile Grade @ Q	Q		
76		375		
75		³³⁵ m V.C.		
74 Subgrode	Extg. Pvmt @ 🤤	4	<u>00 mm-80 m</u> 0.73%	+039.86 F.L. 73.74
		+967		-# <u></u>
73	+960.05 Inlet F.L. 74.		030.10 MH.F.L.72.750	300 mm-80 m - +1.46%
72			Pipe Outfall F.L. 72.670	
			300 mm-5.5 m +1.46	+063.24 Inle F.L. 71.950
″LW″		Exc. 1213 (Excess)		F.L. 71.930
ARTHWORK		Stone Emb. 121		
MEDIAN		Exc. 900 (Excess)		
ARTHWORK		Stone Emb. 592		
	"L W "93+900		~LW~94+000	
		"LE" LINE		
78 50				
	Profile Grade @ E		75.750	
77				
76	-0.474%			+035.100 Inle F.L. 73.606
	-		0	
220 m V.C. Subgrade	Ground Line @ Q		120 m V.C.	
74			+014.984	ហ្
			984	Subgrade
"LΕ"		Exc. 904 (Excess) +0	30.0 Inlet F.L. 73.657	300 mm-6.5 m -
ARTHWORK	Stone Emb. 67			Stone
ODOTLDATA Projects 13/59_Connell, 217-13/59	Ctl.pf3 1 16 2004 7:46:44 AM hwy		'LE"94+000	

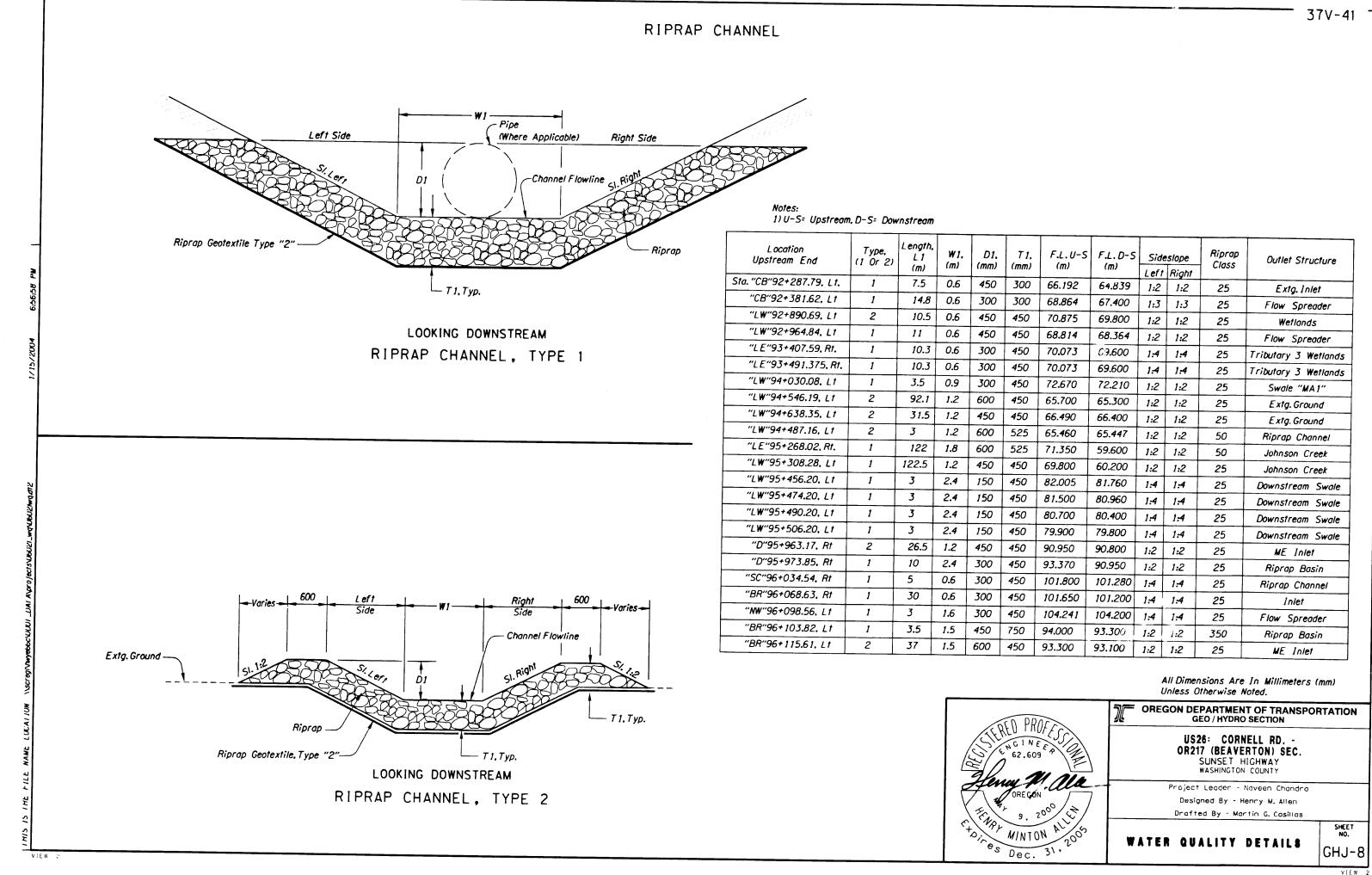
					37V	-41
	77					
875 m Overlay	76					
	75					
let	74					
rade == 300 mm-80 m						
=====300 mm-80 m $=1.05%$ $=1.05%$ $=1.05%$ $=1.71.904$	73					
-300 mm - 54 m - 0.912 mm	72					
300 mm-5 m -0.91%	71					
	•					
<i>"</i> L W <i>"</i> 94+100						
	77					
875						
3 m m	76					
1.122%	75					
	74					
_300_mm-82.0_m 80% -1.20%	73					
mb. 21	72					
"LE "94+100		OREGON	EDADTAE			
STERED PROFESSION	\mathbb{X}^{-}		WAY ENGINE	EERING SECT		
EL STINE SITED PROFESS ENGINEER 17,856		OR2	SUNSET H WASHINGTON	E rton) se Highway	C.	
EL OREGON ST		Des	signed By -	- David Joe Danny Y. Hor Tien Nguyen	·i	
17,856 17,956 17,956			PROFIL	. E		sheet No. 11B

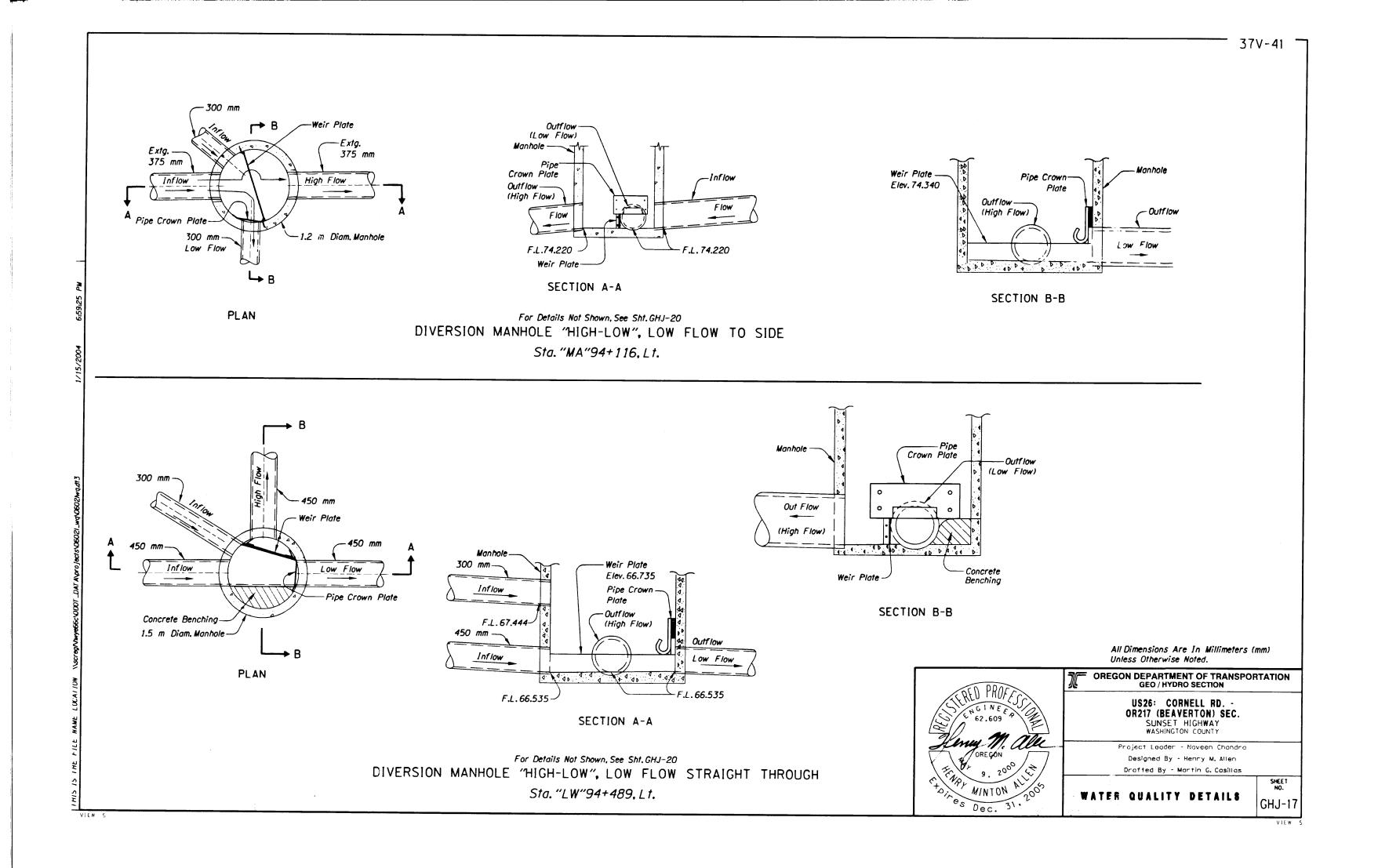


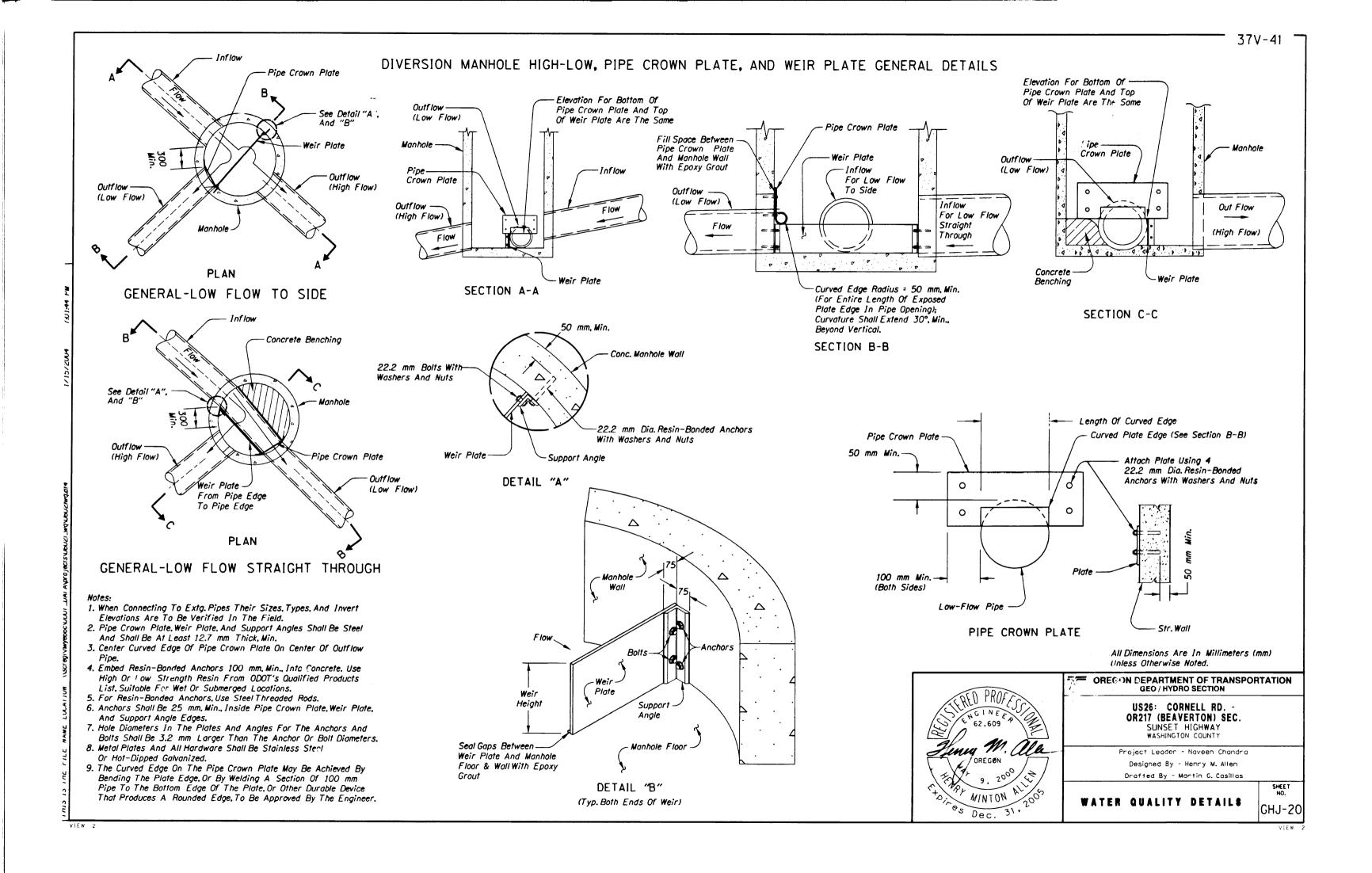
F:<0207_24TA\Projects_15+59.Comment_210-13459ct1.pt5 ____1 TE_2004 _T.55.44_AM ______nwys97

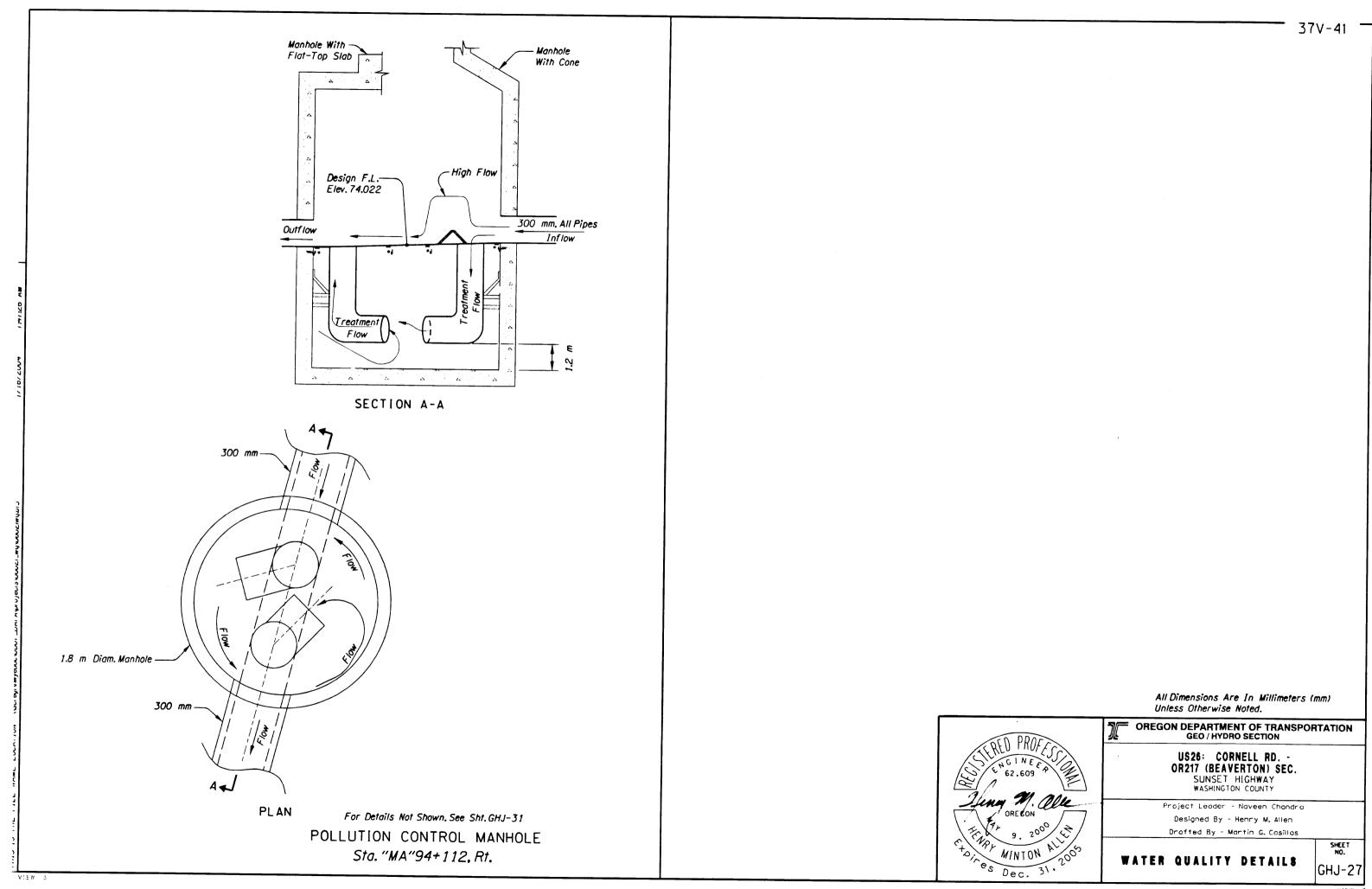

1:1000 - 3

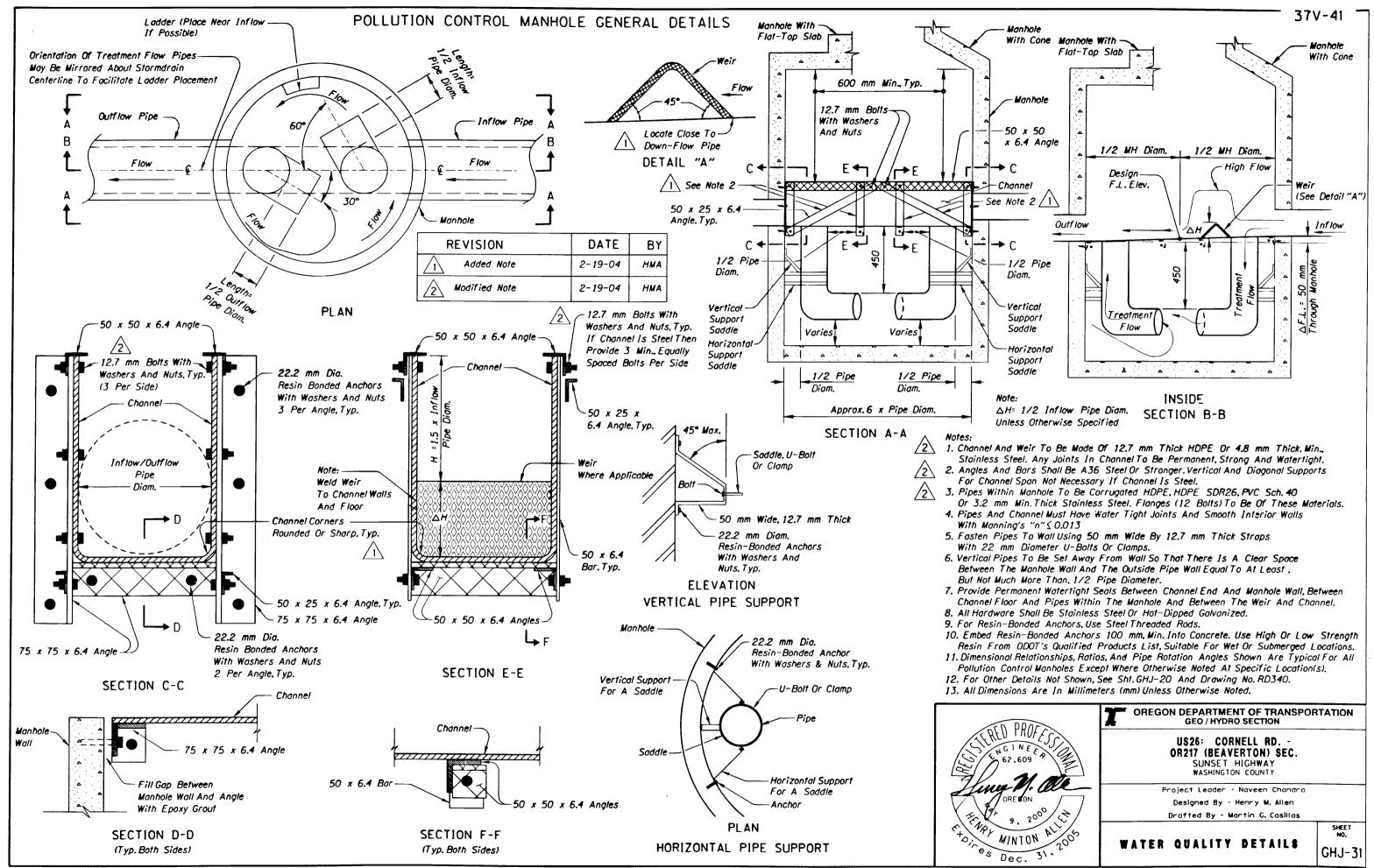
75	21-					· · · · · · · · · · · · · · · · · · ·															
	335 m V	c.		····	50 mm								1615					•		+	
74 +1	.46%				Overlay		Profi	le Grade	e@{		″L	.W″L	INE								
- 1	0 mm-80 m																				
13	+108.61 M.H.			-									_								
	F.L. 73.911			∽ Subgrad	1e				tg. Pvmt.	@ E 300		0 m - 1		1.335%							
+	119.82 Inlet		450 -					 А				F.L.70		$\frac{1}{1}$							
71			1 -0	<u>m-80 m</u>		<u> </u>		Ы Н		-4 <u>50 mm</u> -			.900				,	1	L.70.72		- II
	300 mm-6 m — -13.73%	+12	21.84 M.H.I	F.L. {72.10 71.4	00 (300 11 (300	mm W.) mm N.)				0.5	0%	·			7=)						
70	300 mm-54 m			(7].4	11 (450		- / / /						† F.L. 70		$\left - \right $				69.850		;]; 1];
69	-0.91%					m - 4 .009							0 m -1 1.F.L.70						n – 1.30 5 m + 1		7
			+2	01.53 M.H	.F.L. {7	71.708 (30 71.011 (45	0 mm)							-7.25%		ÿ			<u>mm-53</u>		
11	w″					1.011 (45			+2	92.88 M.H.	F.L. [69	.810 (37	5 mm & 0 mm St	450 mm	SW.)			-	1.00%		- Ĥ
								Exc. 1	785 (Ex												
									· · · · · · · · · · · · · · · · · · ·		e Emb. 3	100		-		<u> </u>	1				
										Exc. 3	800 (Ex	c es s)									
EART	HWORK									Stone	Emb. 1	961			<u> </u>	1	<u> </u>				
	<u>"L₩"9</u> 4+100						"LW"9	1+200			_				L	<u>′1₩″9</u>	4+300				
76		875								11	E″ L	INF									
		3 3 3	74.3							<u>_</u>					-	+ +					
75	-1.122%		47									_									
74		n																			
/4	Subgrade		70 m V.C	c.					1 200												
73	300 mm-820	I							1.328%					P	rofile (rade Ø	¥	+355.	894 Inle	et F.L.6	9.261
	300 mm-82.0 - 1.20%	<u></u>	30				11							1							i
72				<u>0 mm-81</u> 1.40%	5_m						$+ \downarrow$	- Groun	d Line (@ C	n II						
71			140.			Τ			<u>450 n</u>	0.30% <u>m</u>	?_				H	-				200	mv.
			900-					- + 108				_			1	-375	mm-74	.0 m	Sub	grade -	\rightarrow
70				(F1 72	610			. 1301		nlet $\left\{ \begin{matrix} F.L.\\F.L. \end{matrix} \right\}$	71379	_	+			++			<u> </u>		
69		+116.8	327, Rt. Inlei	f { F.L. 72. F.L. 72.	.560										(287.41	5 Inlet	{F.L.7 {F.L.7	1.093 1.062		
																					ų
	.E″									Exc. 8	90 (Exc	ess)									
EART	HWORK								<u>_</u>			St	one Emt	b. 7	···· ··						
															,						— r
														L							
													1								
													+			├					
																		Ĩ			
	10 5 10 4 100																				
						i	"LE"94		nw /s	i			<u> </u>			<u>'1E''94</u>	1+300				

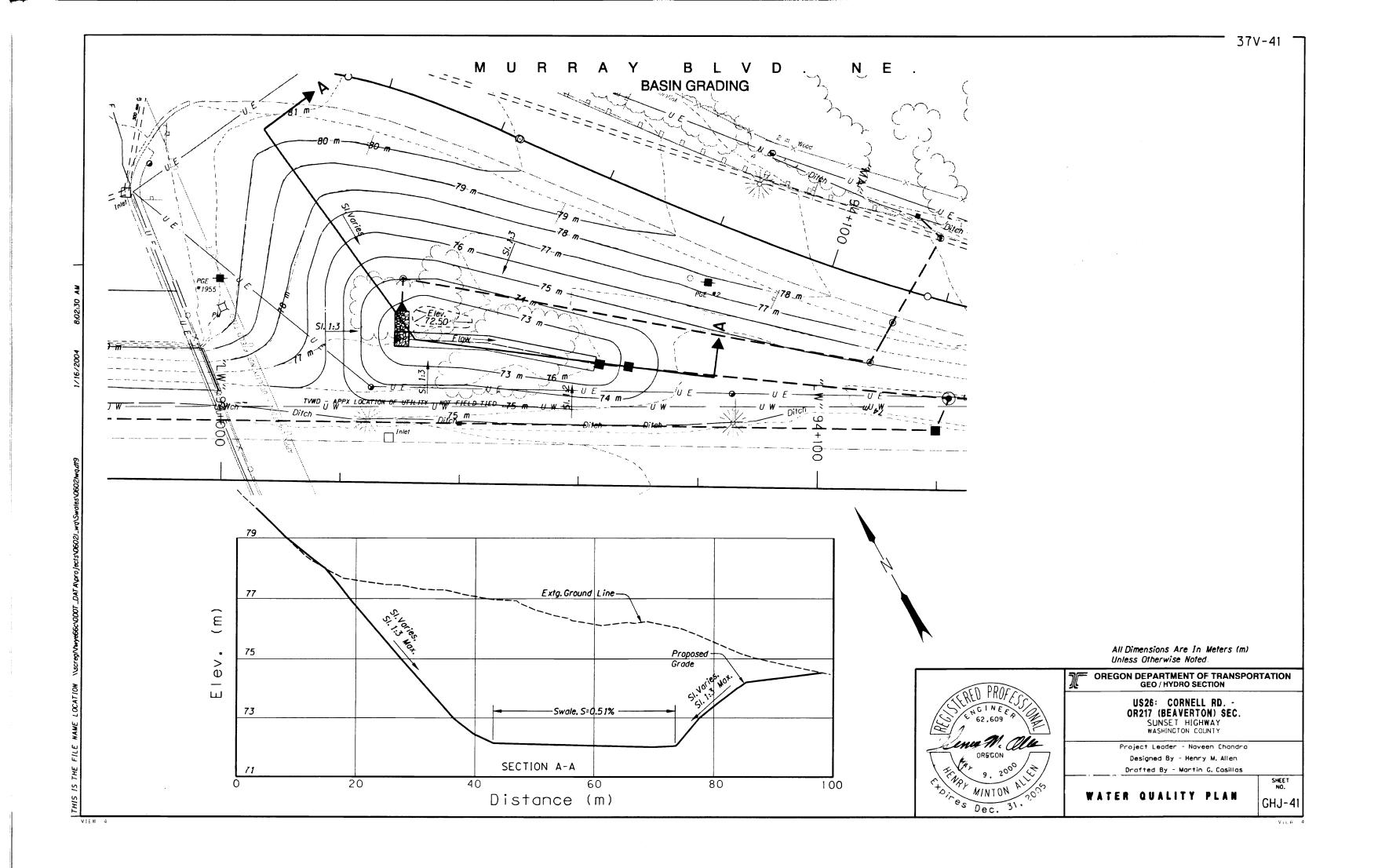


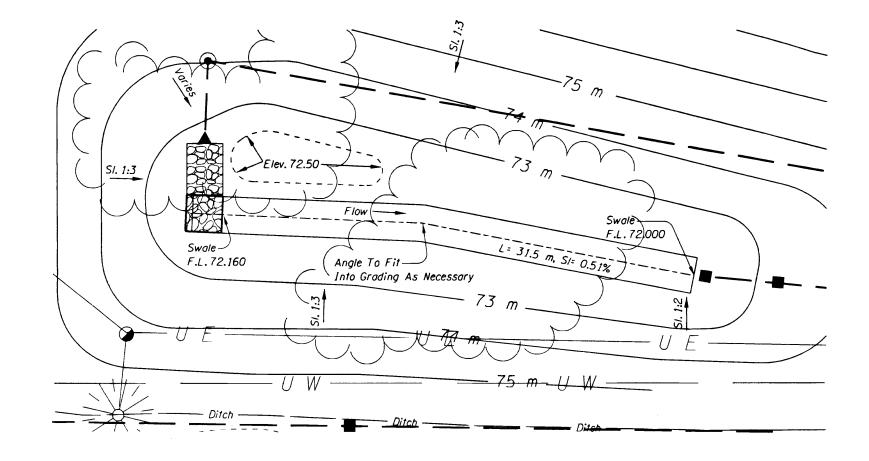

1.1000 - 2

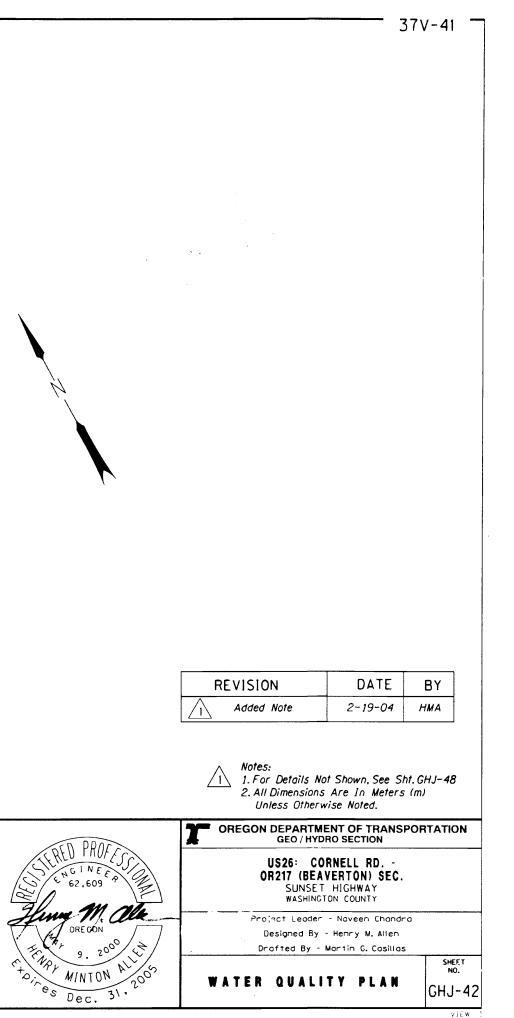


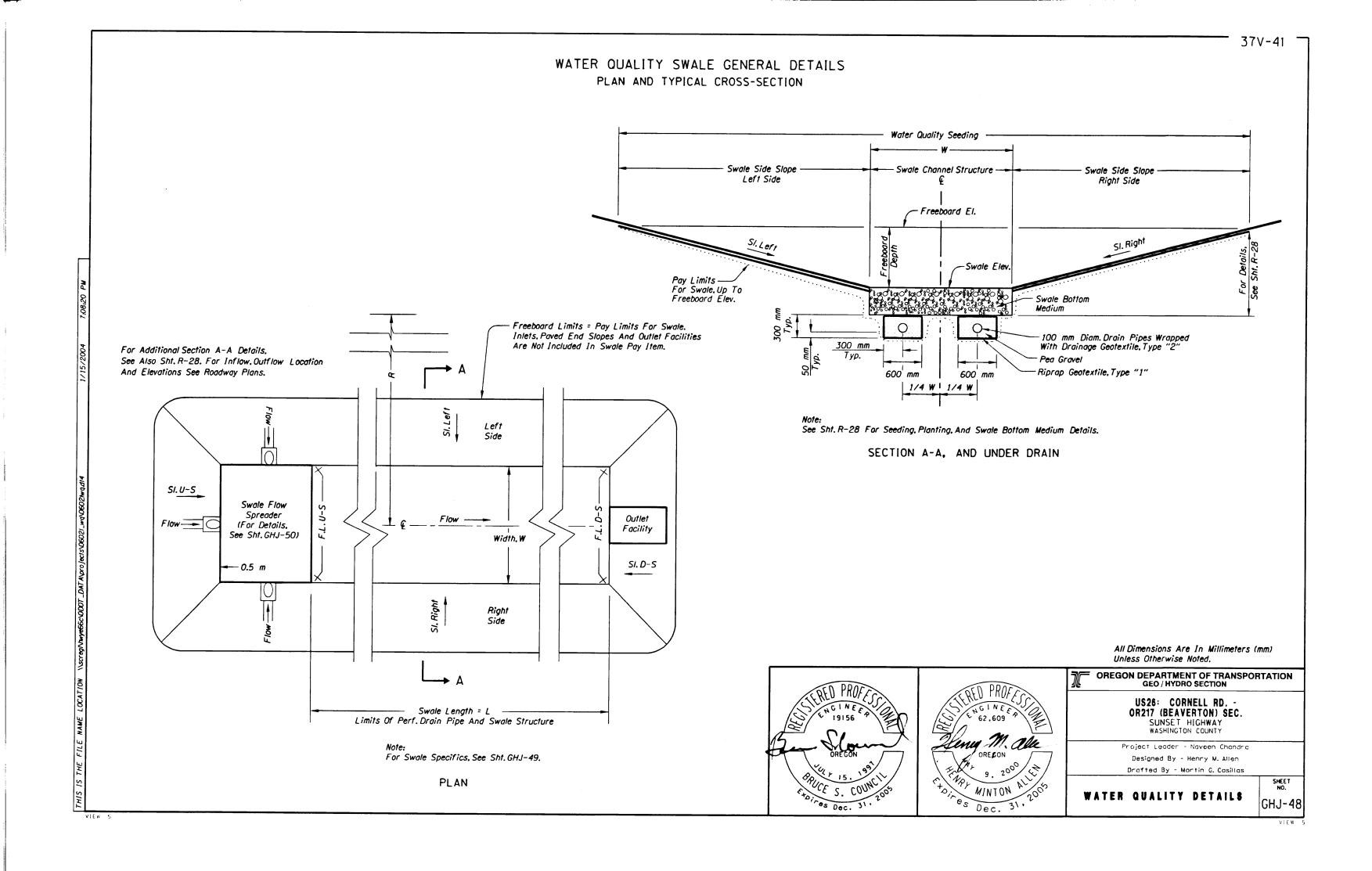

F::0001_0414.Fncjccts-15453.Cornel_235.13459cf1.pf0 1 15 2004 10.435 PM owye00e



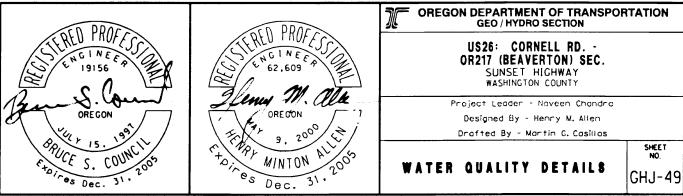

W1. (m)	D1. (mm)	T 1. (mm)	F.L.U-S (m)	F.L.D-S (m)	Sideslope Left Right		Riprap Class	Outlet Structure		
0.6	450	300 66.192 64.839		64.839	1:2 1:2		25	Extg. Inlet		
0.6	300	300	68.864	67.400	1:3	1:3	25	Flow Spreader		
0.6	450	450	70.875	69.800	1:2	1:2	25	Wetlands		
0.6	450	450	68.814	68.364	1:2	1:2	25	Flow Spreader		
0.6	300	450	70.073	C Э.600	1:4	1:4	25	Tributary 3 Wetlands		
0.6	300	450	70.073	69.600	1:4	1:4	25	Tributary 3 Wetlands		
0.9	300	450	72.670	72.210	1:2	1:2	25	Swale "MA1"		
1.2	600	450	65.700	65.300	1:2	1:2	25	Extg. Ground		
1.2	450	450	66.490	66.400	1:2	1:2	25	Extg. Ground		
1.2	600	525	65 .4 60	65.447	1:2	1:2	50	Riprap Channel		
1.8	600	525	71.350	59.600	1:2	1:2	50	Johnson Creek		
1.2	450	450	69.800	60.200	1:2	1:2	25	Johnson Creek		
2.4	150	450	82.00 5	81.760	1:4	1:4	25	Downstream Swale		
2.4	150	450	81.500	80. 96 0	1:4	1:4	25	Downstream Swale		
2.4	150	4 50	80.700	80.400	1:4	1:4	25	Downstream Swale		
2.4	150	450	79.900	79.800	1:4	1:4	25	Downstream Swale		
1.2	450	450	90.950	90.800	1:2	1:2	25	ME Inlet		
2.4	300	450	93.370	90.950	1:2	1:2	25	Riprap Basin		
0.6	300	450	101.800	101.280	1:4	1:4	25	Riprap Channel		
0.6	300	4 50	101.650	101.200	1:4	1:4	25	Inlet		
1.6	300	450	104.241	104.200	1:4	1:4	25	Flow Spreader		
1.5	450	750	94.000	93.30 0	1:2	i:2	350	Riprap Basin		
1.5	600	450	93.300	93.100	1:2	1:2	25	ME Inlet		







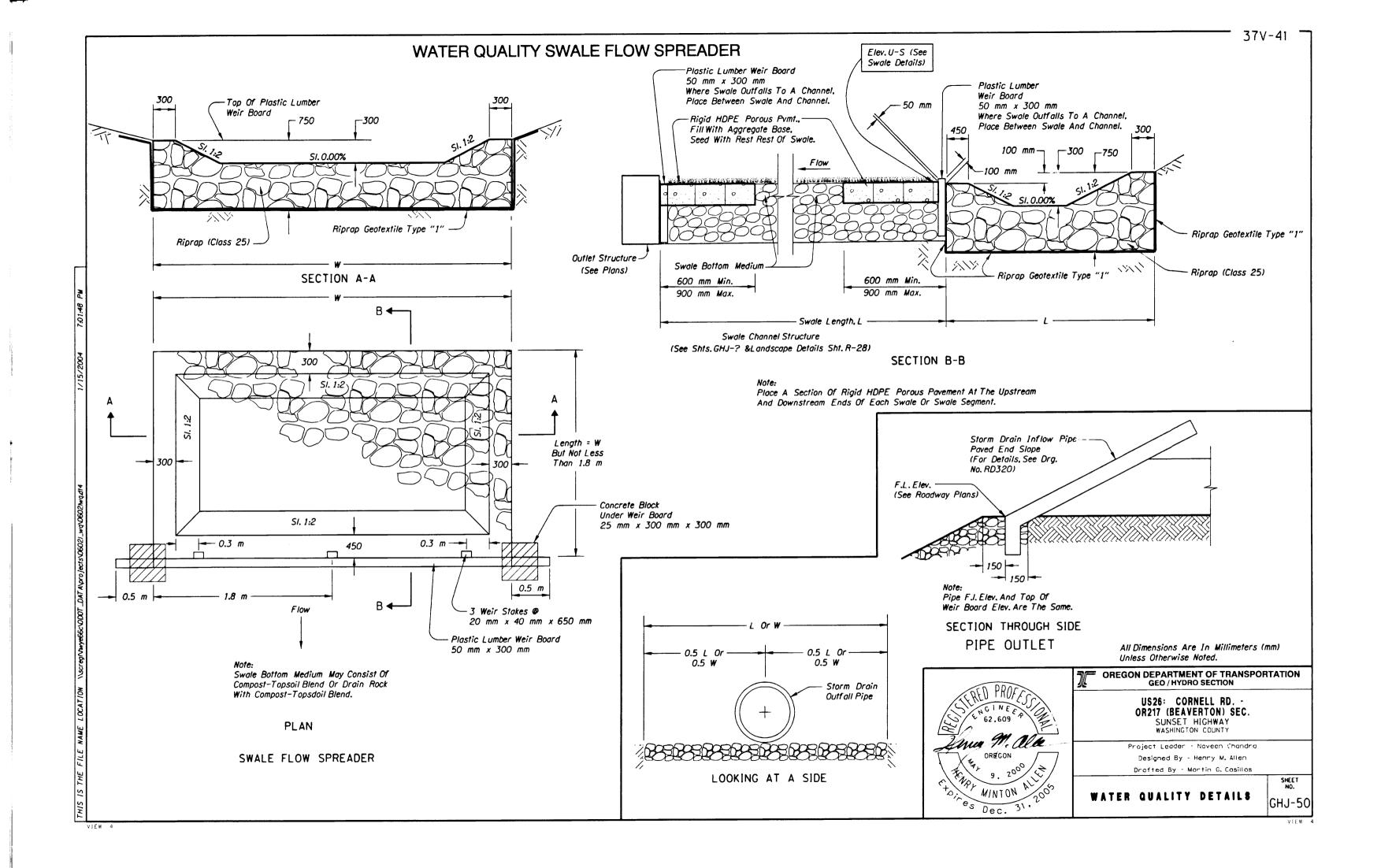
WATER QUALITY SWALE "MA1"

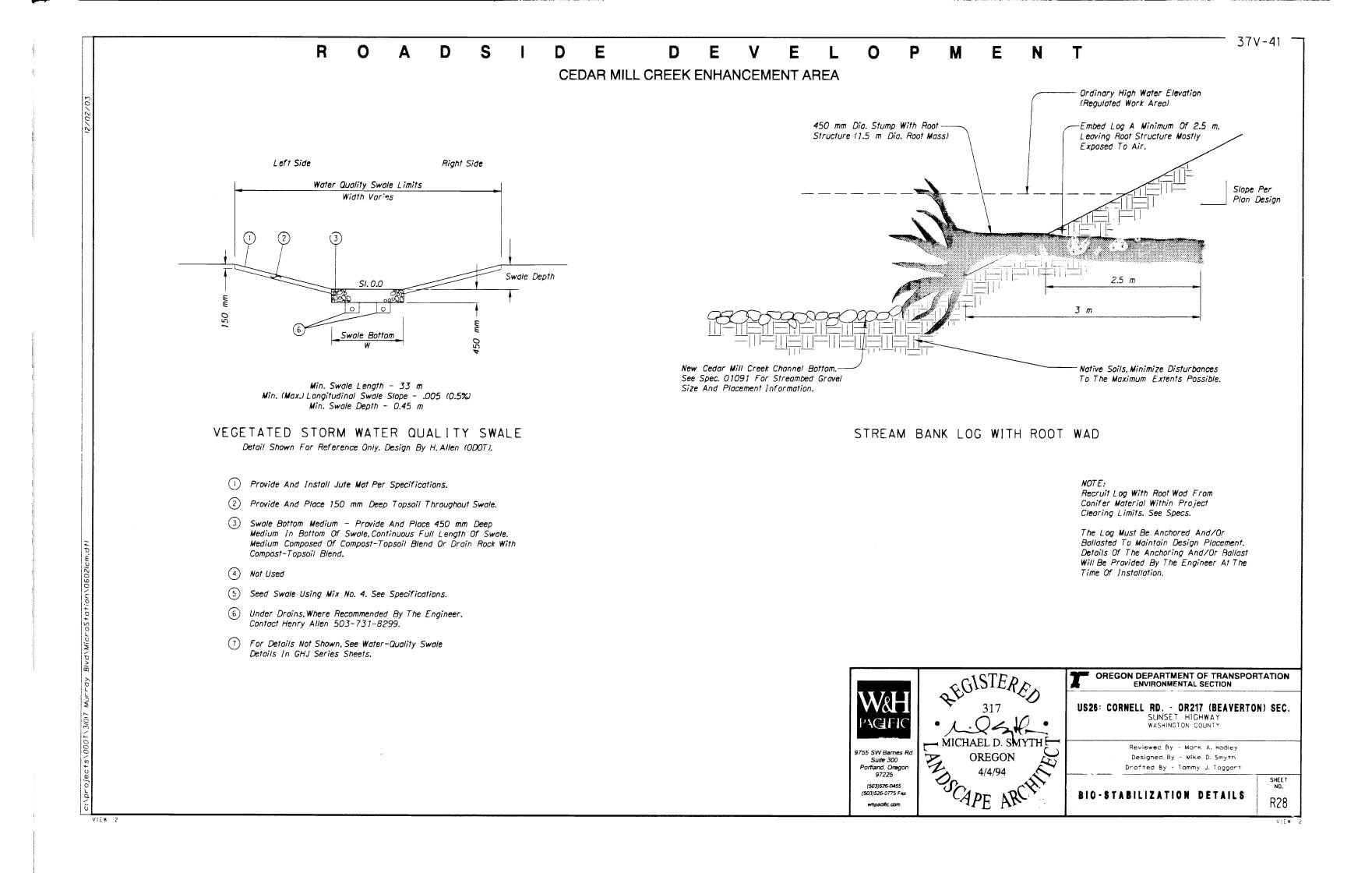


VIEW

Notes: 1) U-S= Upstream, D-S= Downstream 2) See Site Plans For Pipe Inverts At Inlets. 3) "C-T Blend" = Compost-Topsoil Blend, "Rock+C-T" = Drain Rock With Compost-Topsoil Blend.

					Long.	Centerline Curve					Freeboard	Swale	No. Under		
	L,	W,	F.L. U-S,	F.L. D-S,	Slope,	Radius,		Swale Side			Depth,	Bottom	Drain	Under Drain Tie-In	Swale Outlet
Swale ID	m	m	m	m	%	m	U-S	Left	Right	D-S	m	Medium	Segments	Location	Facility
WCW	340	1.2	See GHJ-32	See GHJ-32	Varies	None	1:3	1:4	1:6	1:4	0.3	Rock+C-T	2	"G-2MA" Mod. Inlet	"G-2MA" Mod. Inlet
WCE	322	2.4	See GHJ-33	See GHJ-33	Varies	None	1:20	1:6	1:4	1:18	0.3	Rock+C-T	2	"G-2MA" Mod. Inlet	"G-2MA" Mod. Inlet
WC1	82	2.4	68.062	66.543	1.85	None	1:4	1:3	1:6	1:4	0.3	C-T Blend	2	"D" Mod. Inlet	"M-E" Mod. Inlet
WC2A	30	0.6	70.673	70.197	1.50	None	1:2	1:2	1:2	1:2	0.3	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2B	474	0.7	70.815	70.637	0.32	None	1:3	1:3	1:3	1:3	0.3	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2C	37	0.8	71.042	70.839	0.55	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2D	41	0.9	72.556	71.634	Varies	None	1:5	1:5	1:5	1:5	0.3	Rock+C-T	1	"D" Mod. Inlet	"D" Mod. Inlet
WC3A	50	2.4	70.195	69.961	0.5	None	1:4	Var.	Var.	1:4	.8	C-T Blend	2	"D" Mod. Inlet	"V"-Bottom Ditch
WC3B	50	2.4	74.408	74.158	0.5	80	1:4	1:4	1:6	1:4	0.45	C-T Blend	2	"D" Mod. Inlet	"M-E" Mod. Inlet
MA1	31.5	2.4	72.160	72.000	0.51	None	1:3	1:3	Var.	1:6	0.45	C-T Blend	None	N.A.	"M-E" Mod. Inlet
CBR	See GHJ-43	2.4	See GHJ-43	See GHJ-43	Varies	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	"D" Inlet
N1a	23	2.4	102.150	102.035	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Riprap Basin
N1b	12.3	2.4	101.812	101.750	0.5	25	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel
N2	36	2.4	102.750	102.570	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N3	36	2.4	103.350	103.170	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N4	36	2.4	103.850	103.670	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N5a	12.6	2.4	104.404	104.341	0.5	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel
N5b	24	2.4	104.150	104.030	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
S1	36	2.4	93.550	93.370	0.5	20, Each	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel




OC A 7

NANF

37V-41

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.

