## OPERATION & MAINTENANCE MANUAL

**DFI No.: D00111** 

**Facility Type: Water Quality** 

**Biofiltration Swale** 



**JUNE 2011** 

## **INDEX**

| 1. | IDENTIFICATION              |                                   | 1       |
|----|-----------------------------|-----------------------------------|---------|
| 2. | FACILITY CONTACT INF        | FORMATION                         | 1       |
| 3. | CONSTRUCTION                |                                   | 1       |
| 4. | STORM DRAIN SYSTEM          | AND FACILITY OVERVIEW             | 2       |
| 5. | FACILITY HAZ MAT SPI        | LL FEATURE(S)                     | 6       |
| 6. | <b>AUXILIARY OUTLET (HI</b> | GH FLOW BYPASS)                   | 6       |
| 7. | MAINTENANCE REQUIR          | REMENTS                           | 6       |
| 8. | WASTE MATERIAL HAN          | IDLING                            | 7       |
| ΑP | PENDIX A:                   | Operational Plan and Profile Draw | ving(s) |
| ΑP | PENDIX B:                   | ODOT Project Plan S               | Sheets  |

#### 1. Identification

Drainage Facility ID (DFI): **D00111** 

Facility Type: Water Quality Biofiltration Swale

Construction Drawings: (V-File Number) 37V-041

Location: District: 02B

Highway No.: 047

Mile Post: 66.13/66.08 (beg./end)

Description: This facility is located along the unobstructed right shoulder north of the westbound lanes of US26 (Highway 047) near their connection to the off ramp to NW Cornell Road. Vehicles can access the facility from this shoulder. This facility is northwest of a water quality manhole (DFI

D00234.)

## 2. Facility Contact Information

Contact the Engineer of Record, Region Technical Center, or Geo-Environmental's Senior Hydraulics Engineer for:

- Operational clarification
- Maintenance clarification
- Repair or restoration assistance

#### **Engineering Contacts**:

Region Technical Center Hydro Unit Manager

Or

Geo-Environmental Senior Hydraulics Engineer (503) 986-3365.

## 3. Construction

Engineer of Record: ODOT Designer – Region 1 Tech. Center,

**Bruce Council** 

Facility construction: March 11, 2004

Contractor: Mowat Construction (Contract Number 12962)

## 4. Storm Drain System and Facility Overview

A water quality swale is a flat-bottomed open channel designed to treat stormwater runoff from highway pavement areas. This type of facility is lined with grass. Treatment by trapping sedimentation occurs when stormwater runoff flows through the grass.

This swale, approximately 270 feet in length, is located along the unobstructed right shoulder north of the westbound lanes of US26 (Highway 047) near their connection to the off ramp to NW Cornell Road (Exit 65). Vehicles can access the facility from the shoulder (**Photo 1**). Near this facility, to the southeast, there is a water quality manhole (DFI D00111.)

The swale treats a drainage area composed of the westbound lanes of US 26 (Hwy 047) extending approximately 1214 feet of US 26 (Hwy 047) east of the facility (**Photo 2**). Stormwater runoff is collected by a series of inlet structures connected by conveyance pipes. Pipes further upstream are 12-inches in diameter, and pipes further downstream are 18-inches in diameter. All drainage that enters the series of conveyance pipes is pretreated at a water quality manhole (**Point A on the Operational Plan in Appendix A**) prior to discharge into the swale. Additional drainage that escapes the catch basins is captured by a roadside ditch and conveyed towards the swale (**Photo 3**; **Points &**).

After treatment through the swale, the water is discharged into a series of ditch inlet structures at the swale outlet (**Point D**). These structures consist of a primary outlet (a type M-E structure upstream) and a secondary outlet (a type D structure downstream.) Treatment flows exit the swale via the primary outlet. They then pass through an 18-inch conveyance pipe, the secondary outlet and another 18-inch conveyance pipe, which outfalls 48 feet from the end of the swale (**Point E**).



Photo 1: View of water quality biofiltration swale (DFI D00111) from east end facing west. Exit 65 in the background.



Photo 2: Water Quality Manhole (DFI D00234) receives drainage from the westbound lanes of US26.

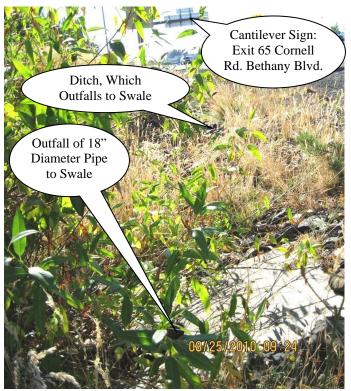



Photo 2: Inlet of water quality swale. Photo taken facing east. Westbound lanes of US26 in background.



Photo 3: Location of ditch inlet structures at outlet of water quality biofiltration swale (DFI D00111.) Photo taken facing west.

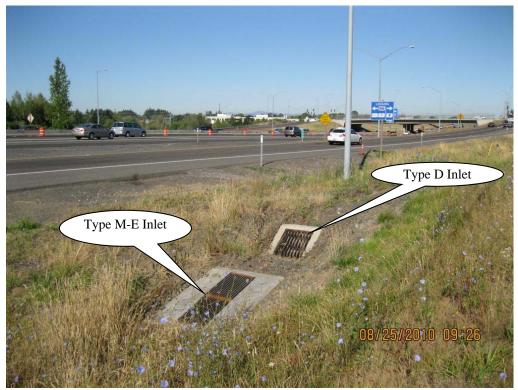



Photo 4: Ditch inlet structures at swale outlet.

For further information and details regarding the system refer to Appendix A for the Operational Plan and Appendix B for the Construction Project Plan sheets.

## A. Maintenance equipment access:

Vehicles and personnel can access the facility from the unobstructed right shoulder north of the westbound lanes of US26 (Highway 047) near their connection to the off ramp to NW Cornell Road.

- B. Heavy equipment access into facility:

  - ☐ Allowed (with limitations)
  - ☐ Not allowed
- C. Special Features:
  - ⋈ Amended Soils
  - □ Porous Pavers
  - □ Liners
  - □ Underdrains

## 5. Facility Haz Mat Spill Feature(s)

If necessary, this water quality biofiltration swale may be used as a containment facility for hazardous materials/liquids. When the ditch inlet structures at the facility's outlet area are blocked off, the facility can hold a significant volume. Sandbags or metal plates placed on top of the grates of the ditch inlet structures can be used to block them.

## 6. Auxiliary Outlet (High Flow Bypass)

Auxiliary outlets are provided if the primary outlet control structure can not safely pass the projected high flows. Broad-crested spillway weirs and over flow risers are the two most common auxiliary outlets used in stormwater treatment facility design. The auxiliary outlet feature is either a part of the facility or an additional storm drain feature/structure.

The auxiliary outlet feature for this facility is:

### □ Designed into facility:

The high flow bypass for this swale is a secondary outlet, which is one of the two ditch inlet structures at the swale outlet area. Treatment flows exit the swale via the primary outlet, a type M-E ditch inlet structure. If runoff received by the swale exceeds its treatment capacity, the water level in the swale rises until it reaches the elevation of the secondary outlet, which is a type D ditch inlet structure. High flows bypass the primary outlet and exit the swale through the secondary outlet.

☐ Other, as noted below

## 7. Maintenance Requirements

Routine maintenance table for non-proprietary stormwater treatment and storage/detention facilities have been incorporated into ODOT's Maintenance Guide. These tables summarize the maintenance requirements for ponds, swales, filter strips, bioslopes, and detention tanks and vaults. Special maintenance requirements in addition to the routine requirements are noted below when applicable.

The ODOT Maintenance Guide can be viewed at the following website:

#### http://www.oregon.gov/ODOT/HWY/OOM/MGuide.shtml

Maintenance requirements for proprietary structures, such as underground water quality manholes and/or vaults with filter media are noted in Appendix C when applicable.

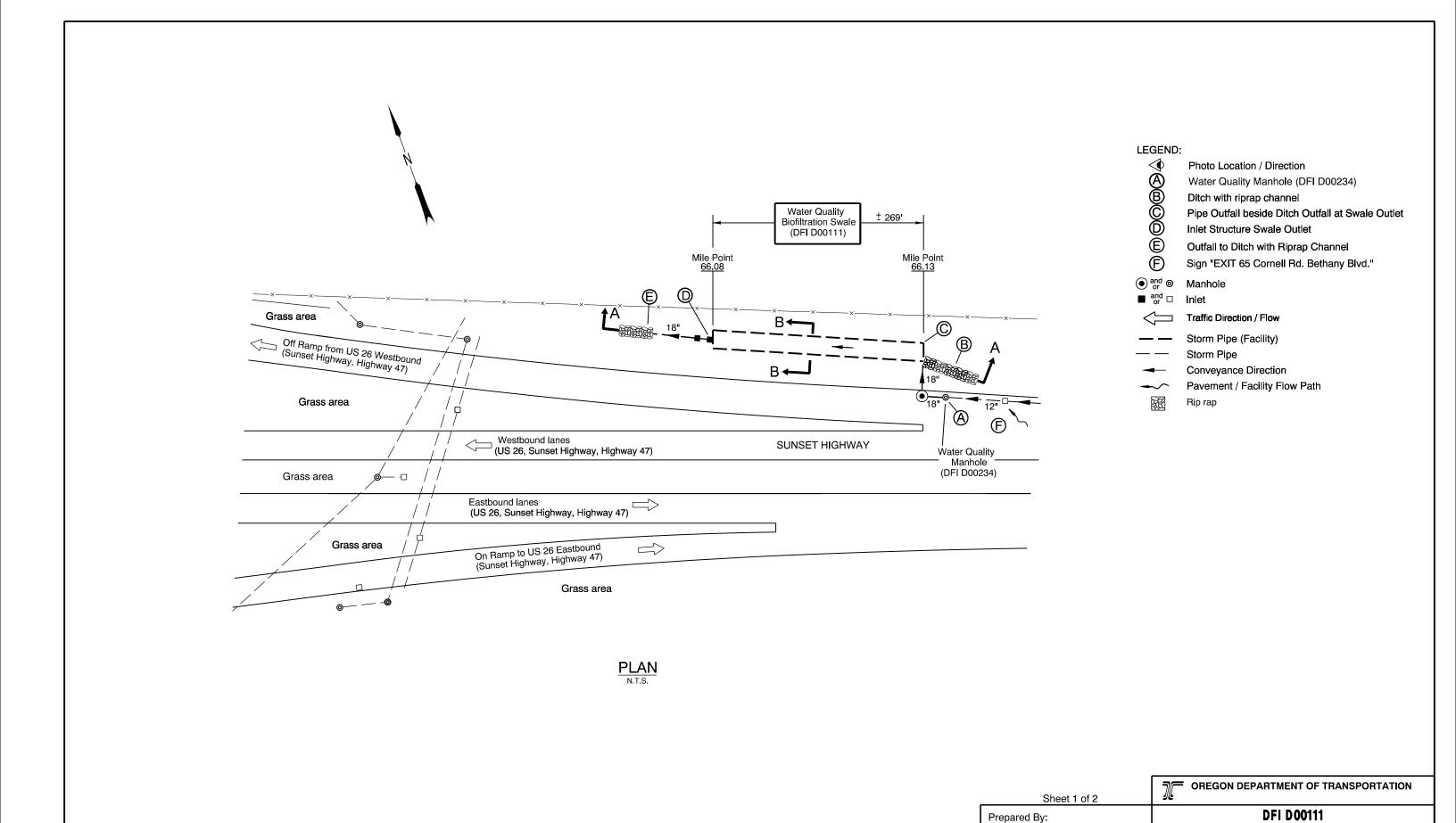
The following stormwater facility maintenance table (See ODOT Maintenance Guide) should be used to maintain the facility outlined in this Operation and Maintenance Manual or follow the Maintenance requirements outlined in Appendix C when proprietary structure is selected below:

| ☐ Table 2 (stormwater ponds)                      |
|---------------------------------------------------|
| □ Table 3 (water quality or biofiltration swales) |
| ☐ Table 4 (water quality filter strips)           |
| ☐ Table 5 (water quality bioslopes)               |
| ☐ Table 6 (detention tank)                        |
| ☐ Table 7 (detention vault)                       |
| ☐ Appendix C (proprietary structure)              |
| □ Special Maintenance requirements:               |
|                                                   |

## 8. Waste Material Handling

Material removed from the facility is defined as waste by DEQ. Refer to the road waste section of the ODOT Maintenance Yard Environmental Management System (EMS) Policy and Procedures Manual for disposal options:

http://www.oregon.gov/ODOT/Maintenance/Documents/ems\_manual.pdf


Contact any of the following for more detailed information about management of waste materials found on site:

| ODOT Clean Water Unit             | (503) 986-3008 |
|-----------------------------------|----------------|
| ODOT Statewide Hazmat Coordinator | (503) 229-5129 |
| ODOT Region Hazmat Coordinator    | (503) 731-8304 |
| ODEQ Northwest Region Office      | (503) 229-5263 |

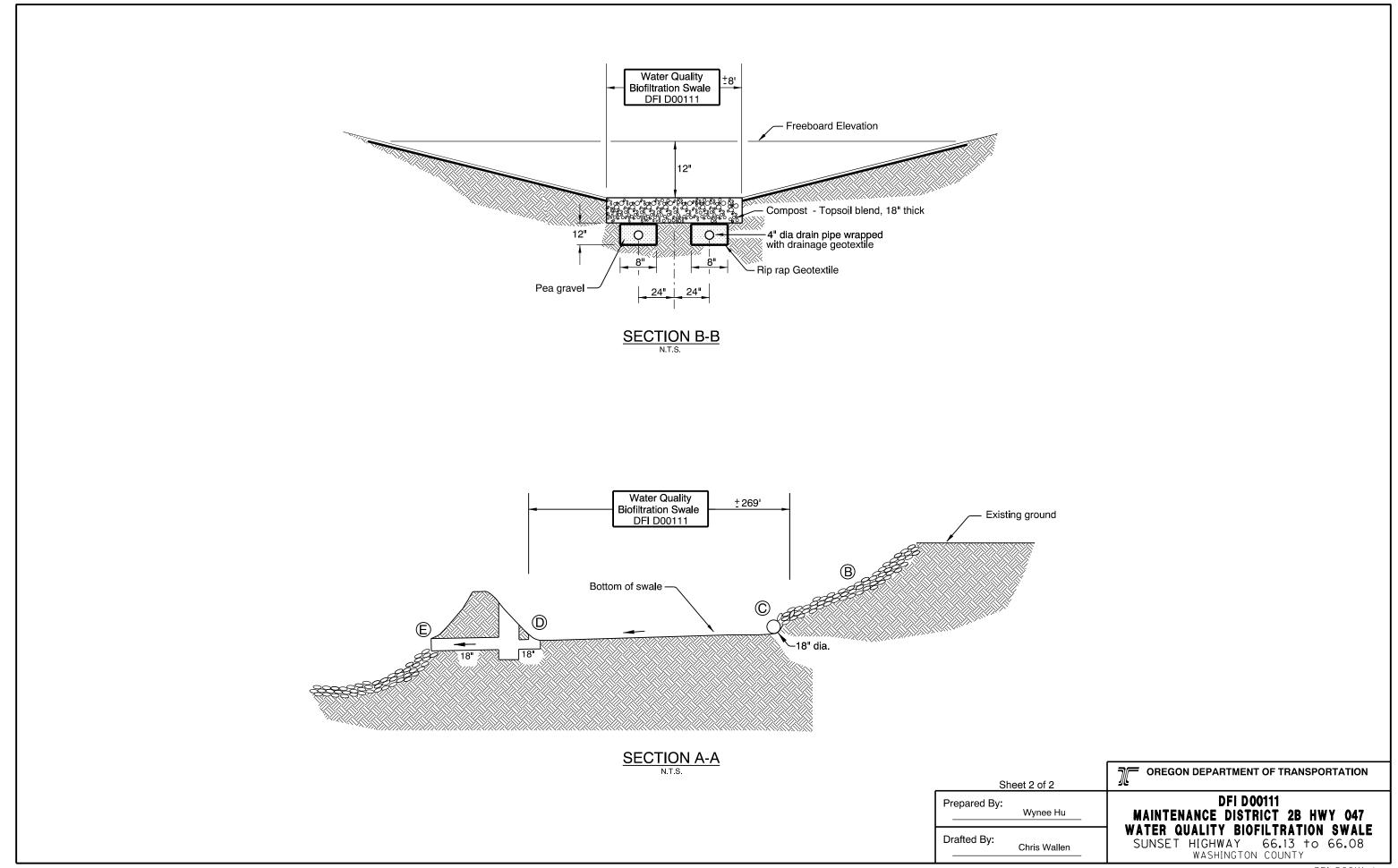
## Appendix A

## Content:

Operational Plan and Profile Drawing(s)



SUNSET HIGHWAY 66.13 to 66.08 Washington county DFI\_D00111.dgn 5/17/2018 3:37:07 PM DFI\_D00111.dgn :: Default Hwyr33e


MAINTENANCE DISTRICT 2B HWY 047

WATER QUALITY BIOFILTRATION SWALE

Wynee Hu

Chris Wallen

Drafted By:



DFI\_D00111.dgn :: Default 5/17/2018 3:36:03 PM Hwyr33e

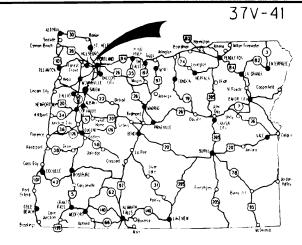
## **Appendix B**

## **Content:**

- ODOT Project Plan Sheets
  - o Cover/Title Sheet
  - o Water Quality/Detention Plan Sheets
  - o Other Details

|              | INDEX OF SHEETS                           |  |  |  |  |  |
|--------------|-------------------------------------------|--|--|--|--|--|
| SHEET NO.    | DESCRIPTION                               |  |  |  |  |  |
| 1            | Title Sheet                               |  |  |  |  |  |
| 1A. 1A-2     | Index Of Sheets Cont'd.                   |  |  |  |  |  |
| 1A-3         | Std. Drg. Nos.                            |  |  |  |  |  |
| 1B           | Sheet Layout                              |  |  |  |  |  |
| 2.2A.2A-2    |                                           |  |  |  |  |  |
| Thru         | Typical Sections                          |  |  |  |  |  |
| 2A-65 Incl.  |                                           |  |  |  |  |  |
| 2B, 2B-2     |                                           |  |  |  |  |  |
| Thru         | Details                                   |  |  |  |  |  |
| 2B-18 Incl.  |                                           |  |  |  |  |  |
| 2C, 2C-2     | Traffic Control Details                   |  |  |  |  |  |
| 2CA, 2CA-2,  |                                           |  |  |  |  |  |
| 2CA-2A.      | Traff's Control Plane Mark Asse           |  |  |  |  |  |
| 2CA-3 Thru   | Traffic Control Plans - Murray Work Area  |  |  |  |  |  |
| 2CA-57 Incl. |                                           |  |  |  |  |  |
| 2CB, 2CB-2   |                                           |  |  |  |  |  |
| Thru         | Traffic Control Plans - Cornell Work Area |  |  |  |  |  |
| 2CB-12 Incl. |                                           |  |  |  |  |  |
| 2D. 2D-2.    |                                           |  |  |  |  |  |
| Thru         | Pipe Data Sheet                           |  |  |  |  |  |
| 2D-12. Incl. |                                           |  |  |  |  |  |

## STATE OF OREGON DEPARTMENT OF TRANSPORTATION


PLANS FOR PROPOSED PROJECT

GRADING, DRAINAGE, STRUCTURES, PAVING, SIGNING, ILLUMINATION, SIGNALS, & ROADSIDE DEVELOPMENT

# US26: CORNELL RD. - OR217 (BEAVERTON) SEC.

SUNSET HIGHWAY

WASHINGTON COUNTY MARCH 2004



Overall Length Of Project - 6.51 km (4.05 Miles)

#### ATTENTION:

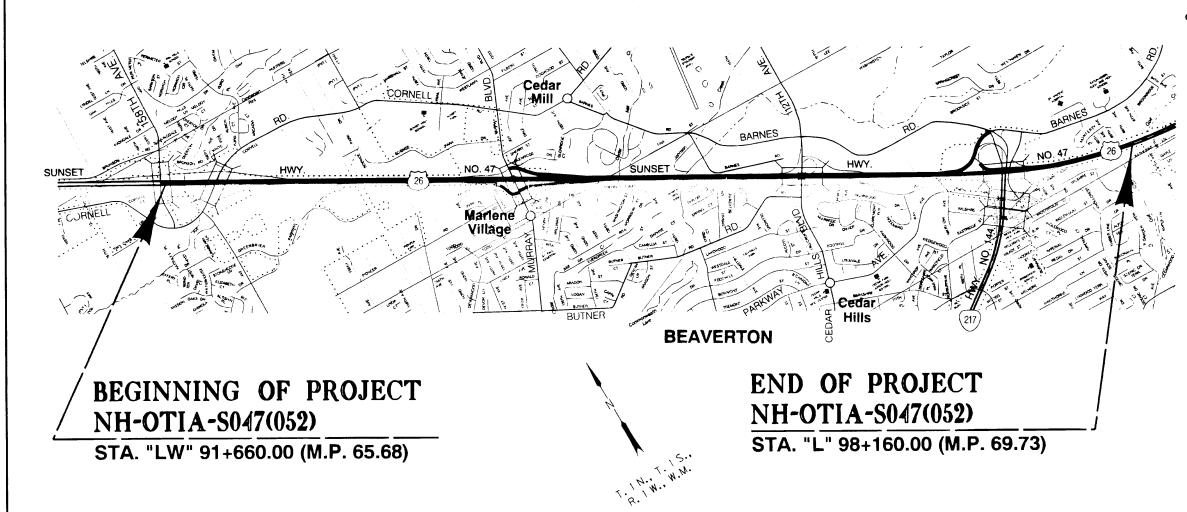
Oregon Law Requires You to Follow Rules
Adopted By The Oregon Utility Notification
Center. Those Rules Are Set Forth in
OAR 952-001-0010 Through OAR 952-001-0090.
You May Obtain Copies Of The Rules By Calling
The Center. (Note: The Telephone Number For
The Oregon Utility Center Is (503) 232-1987.)

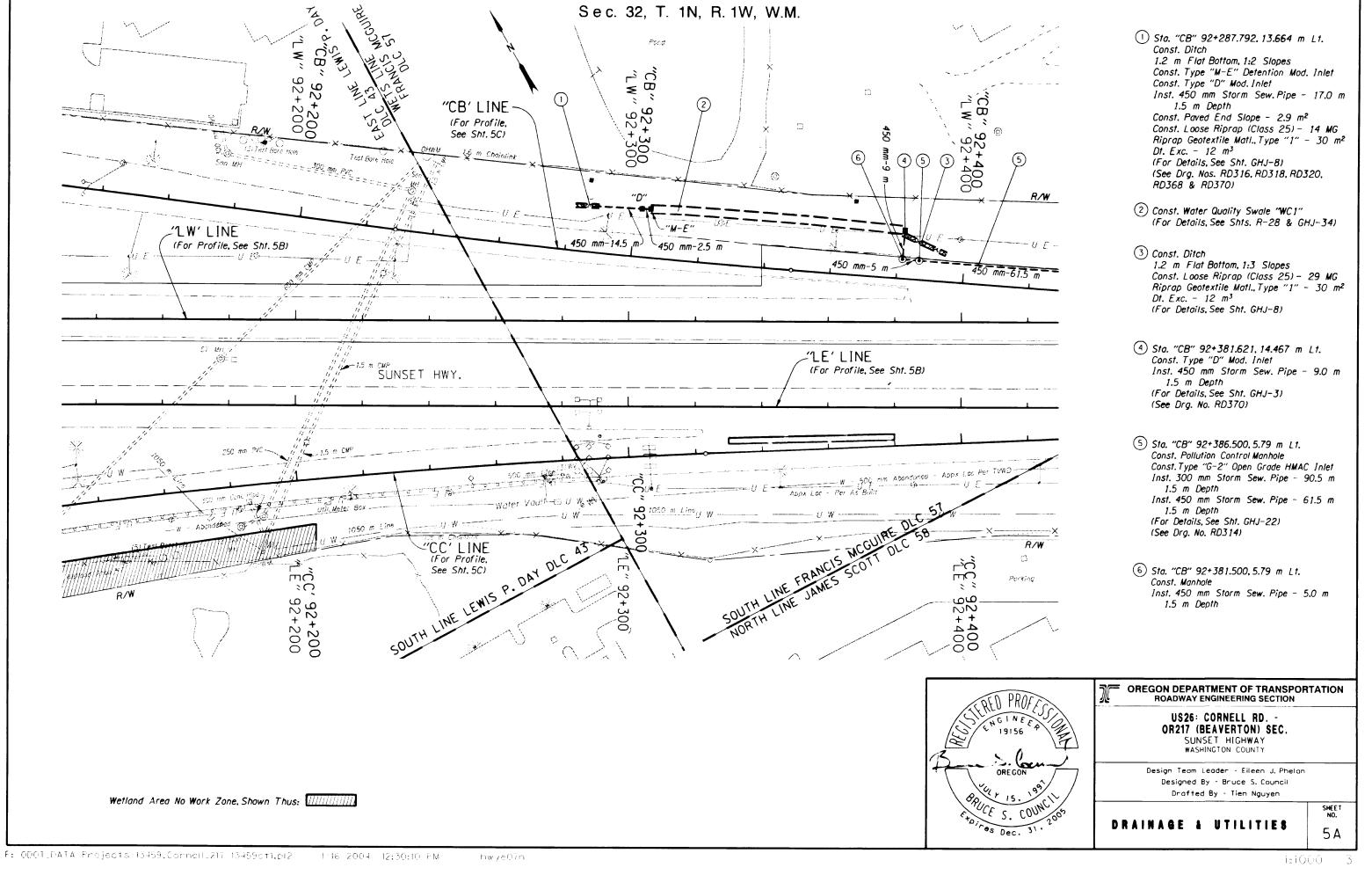


JA JA JA JA JA JA JA JA JA LET'S ALL JA WORK TOGETHER JA TO MAKE THIS JA JOB SAFE JA JA JA JA JA JA JA JA JA

## OREGON TRANSPORTATION COMMISSION

Stuart Foster CHAIRMAN
Gail L. Achterman COMMISSIONER
Mike Nelson COMMISSIONER
Randall Papé COMMISSIONER
John Russell COMMISSIONER


Bruce A. Warner DIRECTOR OF TRANSPORTATION




Cotherine M. Nelson
TECHNICAL SERVICES MANAGING ENGINEER

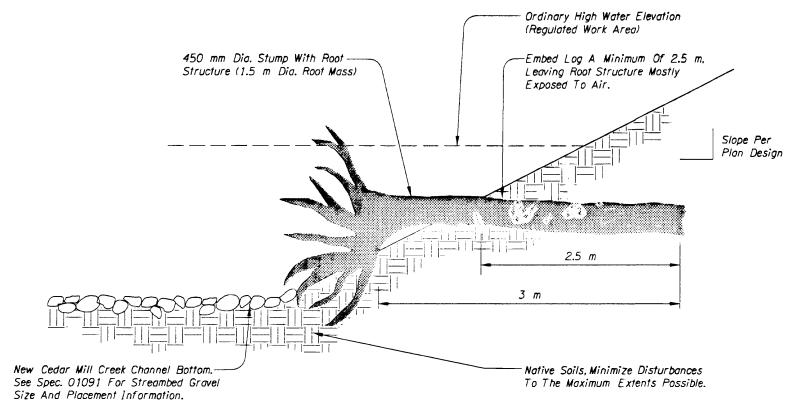
US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY

| FEDERAL HIGHWAY ADMINISTRATION | PROJECT NUMBER    | SHEET<br>NO. |  |
|--------------------------------|-------------------|--------------|--|
| OREGON<br>DIVISION             | NH-OTIA-S047(052) | 1            |  |





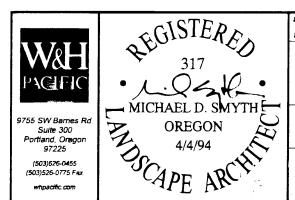
Left Side Right Side Water Quality Swale Limits Width Varies Swale Depth


> Min. Swale Length - 33 m Min. (Max.) Longitudinal Swale Slope - .005 (0.5%) Min. Swale Depth - 0.45 m

## VEGETATED STORM WATER QUALITY SWALE

Detail Shown For Reference Only. Design By H. Allen (ODOT).

- 1) Provide And Install Jute Mat Per Specifications.
- Provide And Place 150 mm Deep Topsoil Throughout Swale.
- 3 Swale Bottom Medium Provide And Place 450 mm Deep Medium In Bottom Of Swale, Continuous Full Length Of Swale.


  Medium Composed Of Compost-Topsoil Blend Or Drain Rock With Compost-Topsoil Blend.
- Seed Swale Using Mix No. 4. See Specifications.
- Under Drains, Where Recommended By The Engineer. Contact Henry Allen 503-731-8299.
- (7) For Details Not Shown, See Water-Quality Swale Details In GHJ Series Sheets.



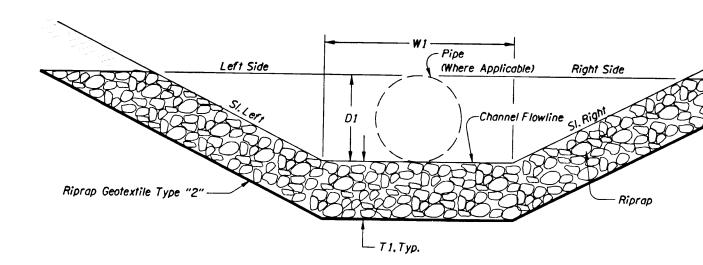
STREAM BANK LOG WITH ROOT WAD

Recruit Log With Root Wad From Conifer Material Within Project Clearing Limits. See Specs.

The Log Must Be Anchored And/Or Ballasted To Maintain Design Placement. Details Of The Anchoring And/Or Ballast Will Be Provided By The Engineer At The Time Of Installation.



**OREGON DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL SECTION** 


US26: CORNELL RD. - OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

> Reviewed By ~ Mark A. Hadley Designed By - Mike D. Smyth Drafted By - Tammy J. Taggart

BIC-STABILIZATION DETAILS

R28

(4) Not Used



LOOKING DOWNSTREAM
RIPRAP CHANNEL, TYPE 1

Extg. Ground

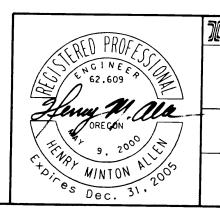
Right 600

Channel Flowline

Side

Channel Flowline

T1, Typ.


LOOKING DOWNSTREAM

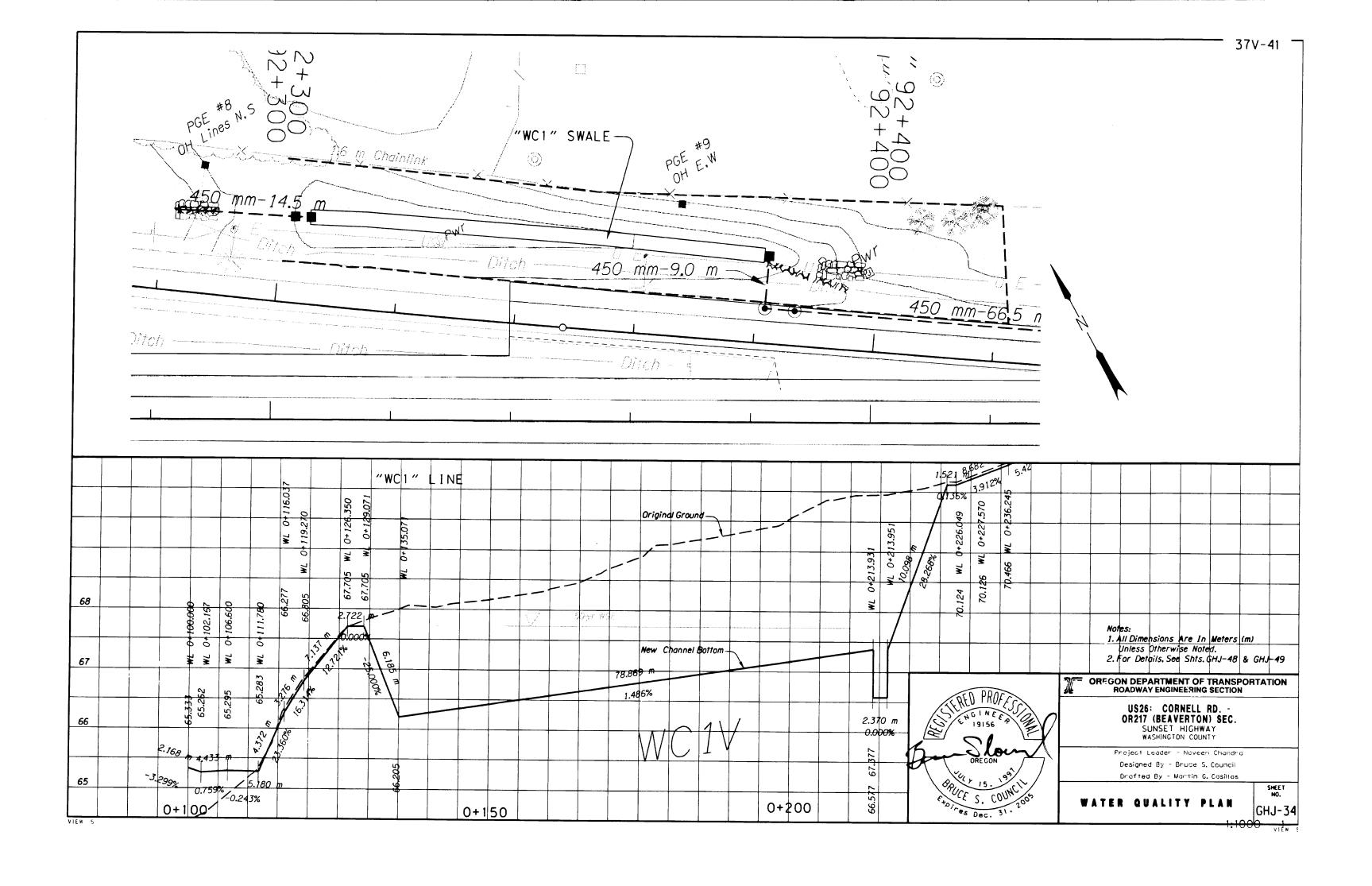
RIPRAP CHANNEL, TYPE 2

Notes: 1) U-S= Upstream, D-S= Downstream

| Location<br>Upstream End | Type,<br>(1 Or 2) | Length, | W1. | D1. | T1.  | F.L.U-S | 1       | Side | slope | Riprap<br>Class | Outlet Structure       |  |
|--------------------------|-------------------|---------|-----|-----|------|---------|---------|------|-------|-----------------|------------------------|--|
| Cta ((CD)(00+007-70++    |                   | (m)     |     | -   | (mm) | (m)     | (m)     | Left | Right | C/033           |                        |  |
| Sta. "CB"92+287.79. Lt.  | 1                 | 7.5     | 0.6 | 450 | 300  | 66.192  | 64.839  | 1:2  | 1:2   | 25              | Extg. Inlet            |  |
| "CB"92+381.62, Lt        | 1                 | 14.8    | 0.6 | 300 | 300  | 68.864  | 67.400  | 1:3  | 1:3   | 25              | Flow Spreader          |  |
| "LW"92+890.69, L1        | 2                 | 10.5    | 0.6 | 450 | 450  | 70.875  | 69.800  | 1:2  | 1:2   | 25              | Wetlands               |  |
| "LW"92+964.84, L1        | 1                 | 11      | 0.6 | 450 | 450  | 68.814  | 68.364  | 1:2  | 1:2   | 25              | Flow Spreader          |  |
| "LE"93+407.59, Rt.       | 1                 | 10.3    | 0.6 | 300 | 450  | 70.073  | 09.600  | 1:4  | 1:4   | 25              | Tributary 3 Wetlands   |  |
| "LE"93+491.375, Rt.      | 1                 | 10.3    | 0.6 | 300 | 450  | 70.073  | 69.600  | 1:4  | 1:4   | 25              | Tributary 3 Wetlands   |  |
| "LW"94+030.08. Lt        | 1                 | 3.5     | 0.9 | 300 | 450  | 72.670  | 72.210  | 1:2  | 1:2   | 25              | Swale "MA1"            |  |
| "LW"94+546.19, L1        | 2                 | 92.1    | 1.2 | 600 | 450  | 65.700  | 65.300  | 1:2  | 1:2   | 25              | Exta. Ground           |  |
| "LW"94+638.35, Lt        | 2                 | 31.5    | 1.2 | 450 | 450  | 66.490  | 66.400  | 1:2  | 1:2   | 25              | Extg. Ground           |  |
| "LW"94+487.16, Lt        | 2                 | 3       | 1.2 | 600 | 525  | 65.460  | 65.447  | 1:2  | 1:2   | 50              | Riprap Channel         |  |
| "LE"95+268.02, Rt.       | 1                 | 122     | 1.8 | 600 | 525  | 71.350  | 59.600  | 1:2  | 1:2   | 50              | Johnson Creek          |  |
| "LW"95+308.28, Lt        | 1                 | 122.5   | 1.2 | 450 | 450  | 69.800  | 60.200  | 1:2  | 1:2   | 25              | Johnson Creek          |  |
| "LW"95+456.20, L1        | 1                 | 3       | 2.4 | 150 | 450  | 82.005  | 81.760  | 1:4  | 1:4   | 25              | Downstream Swale       |  |
| "LW"95+474.20, L1        | 1                 | 3       | 2.4 | 150 | 450  | 81.500  | 80.960  | 1:4  | 1:4   | 25              | Downstream Swale       |  |
| "LW"95+490.20, Lt        | 1                 | 3       | 2.4 | 150 | 450  | 80.700  | 80.400  | 1:4  | 1:4   | 25              | Downstream Swale       |  |
| "LW"95+506.20, Lt        | 1                 | 3       | 2.4 | 150 | 450  | 79.900  | 79.800  | 1:4  | 1:4   | 25              | Downstream Swale       |  |
| "D"95+963.17. Rt         | 2                 | 26.5    | 1.2 | 450 | 450  | 90.950  | 90.800  | 1:2  | 1:2   | 25              | ME Inlet               |  |
| "D"95+973.85, Rt         | 1                 | 10      | 2.4 | 300 | 450  | 93.370  | 90.950  | 1:2  | 1:2   | 25              | Riprap Basin           |  |
| "SC"96+034.54, Rt        | 1                 | 5       | 0.6 | 300 | 450  | 101.800 | 101.280 | 1:4  | 1:4   | 25              |                        |  |
| "BR"96+068.63, Rt        | 1                 | 30      | 0.6 | 300 | 450  | 101.650 | 101.200 | 1:4  | 1:4   | 25              | Riprap Channel         |  |
| "NW"96+098.56, Lt        | 1                 | 3       | 1.6 | 300 | 450  | 104.241 | 104.200 | 1:4  | 1:4   |                 | Inlet                  |  |
| "BR"96+103.82. Lt        | 1                 | 3.5     | 1.5 | 450 | 750  | 94.000  | 93.300  | 1:2  |       | 25              | Flow Spreader          |  |
| "BR"96+115.61, Lt        | 2                 | 37      | 1.5 | 600 | 450  | 93.300  | 93.100  | 1:2  | 1:2   | 350<br>25       | Riprap Basin  ME Inlet |  |

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.




OREGON DEPARTMENT OF TRANSPORTATION GEO / HYDRO SECTION

US26: CORNELL RD. -OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

Project Leader - Naveen Chandra Designed By - Henry M. Allen Drafted By - Martin G. Casillas

WATER QUALITY DETAILS

SHEET NO.



## WATER QUALITY SWALE GENERAL DETAILS PLAN AND TYPICAL CROSS-SECTION Water Quality Seeding Swale Side Slope Swale Channel Structure Swale Side Slope Left Side Right Side - Freeboard El. -Swale Elev. Swale Bottom Medium Freeboard Limits = Pay Limits For Swale. Inlets, Paved End Slopes And Outlet Facilities –100 mm Diam.Drain Pipes Wrapped With Drainage Geotextile,Type "2" Are Not Included In Swale Pay Item. 300 mm Typ.Pea Gravel Riprap Geotextile, Type "1" 600' mm 600 mm 1/4 W | 1/4 W Left See Sht. R-28 For Seeding, Planting, And Swale Bottom Medium Details. SECTION A-A, AND UNDER DRAIN Outlet Flow Facility Width, W SI.D-S Right Side All Dimensions Are In Millimeters (mm) Unless Otherwise Noted. OREGON DEPARTMENT OF TRANSPORTATION GEO / HYDRO SECTION US26: CORNELL RD. -OR217 (BEAVERTON) SEC. Swale Length = L Limits Of Perf. Drain Pipe And Swale Structure SUNSET HIGHWAY WASHINGTON COUNTY Project Leader - Naveen Chandra For Swale Specifics, See Sht. GHJ-49. Designed By - Henry M. Allen Drafted By - Martin G. Casillas SHEET NO. PLAN

For Additional Section A-A Details.

And Elevations See Roadway Plans.

SI.U~S

Flow-

See Also Sht. R-28. For Inflow, Outflow Location

Swale Flow Spreader

(For Details.

-0.5 m

See Sht. GHJ-50)

GHJ-48

WATER QUALITY DETAILS

## WATER QUALITY SWALES SITE SPECIFIC INFORMATION

Notes:
1) U-S= Upstream, D-S= Downstream
2) See Site Plans For Pipe Inverts At Inlets.
3) "C-T Blend" = Compost-Topsoil Blend,
"Rock+C-T" = Drain Rock With Compost-Topsoil Blend.

|            | L,         | W,  | F.L. U-S,  | F.L. D-S,  | Long.<br>Slope, | Centerline<br>Curve<br>Radius, |      | Swale Side | eslopes |      | Freeboard<br>Depth, | Swale<br>Bottom | No. Under-<br>Drain | Under Drain Tie-In | Swale Outlet       |
|------------|------------|-----|------------|------------|-----------------|--------------------------------|------|------------|---------|------|---------------------|-----------------|---------------------|--------------------|--------------------|
| Swale ID   | m          | m   | m          | m l        | %               | m                              | U-S  | Left       | Right   | D-S  | m                   | Medium          | Segments            | Location           | Facility           |
| WCW        | 340        | 1.2 | See GHJ-32 | See GHJ-32 | Varies          | None                           | 1:3  | 1:4        | 1:6     | 1:4  | 0.3                 | Rock+C-T        | 2                   | "G-2MA" Mod. Inlet | "G-2MA" Mod. Inlet |
| WCE        | 322        | 2.4 | See GHJ-33 | See GHJ-33 | Varies          | None                           | 1:20 | 1:6        | 1:4     | 1:18 | 0.3                 | Rock+C-T        | 2                   | "G-2MA" Mod. Inlet | "G-2MA" Mod. Inlet |
| WC1        | 82         | 2.4 | 68.062     | 66.543     | 1.85            | None                           | 1:4  | 1:3        | 1:6     | 1:4  | 0.3                 | C-T Blend       | 2                   | "D" Mod. Inlet     | "M-E" Mod. Inlet   |
| WC2A       | 30         | 0.6 | 70.673     | 70.197     | 1.50            | None                           | 1:2  | 1:2        | 1:2     | 1:2  | 0.3                 | C-T Blend       | 1                   | "D" Mod. Inlet     | "D" Mod. Inlet     |
| WC2B       | 474        | 0.7 | 70.815     | 70.637     | 0.32            | None                           | 1:3  | 1:3        | 1:3     | 1:3  | 0.3                 | C-T Blend       | 1                   | "D" Mod. Inlet     | "D" Mod. Inlet     |
| WC2C       | 37         | 0.8 | 71.042     | 70.839     | 0.55            | None                           | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | 1                   | "D" Mod. Inlet     | "D" Mod. Inlet     |
| WC2D       | 41         | 0.9 | 72.556     | 71.634     | Varies          | None                           | 1:5  | 1:5        | 1:5     | 1:5  | 0.3                 | Rock+C-T        | 11                  | "D" Mod. Inlet     | "D" Mod. Inlet     |
| WC3A       | 50         | 2.4 | 70.195     | 69.961     | 0.5             | None                           | 1:4  | Var.       | Var.    | 1:4  | .8                  | C-T Blend       | 2                   | "D" Mod. Inlet     | "V"-Bottom Ditch   |
| WC3B       | 50         | 2.4 | 74.408     | 74.158     | 0.5             | 80                             | 1:4  | 1:4        | 1:6     | 1:4  | 0.45                | C-T Blend       | 2                   | "D" Mod. Inlet     | "M-E" Mod. Inlet   |
| MA1        | 31.5       | 2.4 | 72.160     | 72.000     | 0.51            | None                           | 1:3  | 1:3        | Var.    | 1:6  | 0.45                | C-T Blend       | None                | N.A.               | "M-E" Mod. Inlet   |
| CBR        | See GHJ-43 | 2.4 | See GHJ-43 | See GHJ-43 | Varies          | None                           | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | "D" Inlet          |
| <u>N1a</u> | 23         | 2.4 | 102.150    | 102.035    | 0.5             | 100                            | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A                | Riprap Basin       |
| N1b        | 12.3       | 2.4 | 101.812    | 101.750    | 0.5             | 25                             | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | Channel            |
| N2         | 36         | 2.4 | 102.750    | 102.570    | 0.5             | 100                            | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | Pipe               |
| N3         | 36         | 2.4 | 103.350    | 103.170    | 0.5             | 100                            | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | Pipe               |
| N4         | 36         | 2.4 | 103.850    | 103.670    | 0.5             | 100                            | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | Pipe               |
| N5a        | 12.6       | 2.4 | 104.404    | 104.341    | 0.5             | None                           | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | Channel            |
| N5b_       | 24         | 2.4 | 104.150    | 104.030    | 0.5             | 100                            | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | Pipe               |
| <b>S</b> 1 | 36         | 2.4 | 93.550     | 93.370     | 0.5             | 20, Each                       | 1:4  | 1:4        | 1:4     | 1:4  | 0.45                | C-T Blend       | None                | N.A.               | Channel            |

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.





## OREGON DEPARTMENT OF TRANSPORTATION GEO / HYDRO SECTION

US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY

Project Leader - Noveen Chondro Designed By - Henry M. Allen Drafted By - Martin G. Casillas

WATER QUALITY DETAILS