OPERATION & MAINTENANCE MANUAL

DFI No. D00083

Facility Type: Water Quality Biofiltration

Swale

JULY, 2011

INDEX

1.	IDENTIFICATION		. 1
2.	FACILITY CONTACT INFO	ORMATION	. 1
3.	CONSTRUCTION		. 1
4.	STORM DRAIN SYSTEM	AND FACILITY OVERVIEW	. 1
5.	FACILITY HAZ MAT SPIL	L FEATURE(S)	. 4
6.	AUXILIARY OUTLET (HIG	SH FLOW BYPASS)	. 4
7.	MAINTENANCE REQUIR	EMENTS	. 5
8.	WASTE MATERIAL HAND	DLING	. 5
AP	PENDIX A:	Operational Plan and Profile Drawing	(s)
ΑP	PENDIX B:	ODOT Project Plan She	ets

1. Identification

Drainage Facility ID (DFI): **DFI D00083**

Facility Type: Water Quality Biofiltration Swale

Construction Drawings: (V-File Number) 37V-041

Location: District: 2B (Old 2A)

Highway No.: 047

Mile Post: 68.36/68.39 (beg./end)

Description: This facility is located at the southeastern quadrant of OR26 (Hwy 047) and SW Cedar Hills Blvd. Facility access is obtained from the eastbound on ramp to the

highway.

2. Facility Contact Information

Contact the Engineer of Record, Region Technical Center, or Geo-Environmental's Senior Hydraulics Engineer for:

- Operational clarification
- Maintenance clarification
- Repair or restoration assistance

Engineering Contacts:

Region Technical Center Hydro Unit Manager

Or

Geo-Environmental Senior Hydraulics Engineer (503) 986-3365.

3. Construction

Engineer of Record: ODOT Designer – Region 1 Tech Center

Henry Minton Allen, (503) 731-8200

Facility construction: 2004

Contractor: Mowat Construction Company

4. Storm Drain System and Facility Overview

A water quality swale is a flat-bottomed open channel designed to treat stormwater runoff from highway pavement areas. This type of facility is lined with grass. Treatment by trapping sedimentation occurs when stormwater runoff flows through the grass.

This water quality biofiltration swale facility is designed to handle and treat water quality flows collected by a series of inlets along the south side of US 26 (Hwy 047) and along the east bound highway on-ramp. The drainage is conveyed by a 12-inch storm pipe to a high-low split flow diversion manhole structure, (see point A of the Operational Plan, Appendix A), where stormwater flows are directed into the swale for treatment. The higher flows drain to a detention pond (DFI D00084) west of the swale facility, through the 12-inch diameter storm pipe and a modified manhole (point H of the Operational Plan, Appendix A).

A water quality manhole (DFI D00232) is located upstream of the swale. This manhole is used to remove debris and some oils.

A. Maintenance equipment access: Access to the facility can be obtained from the eastbound on ramp to US 26 (Hwy 047). A maintenance pad is located between the onramp and the facility.

	and the facility.
В.	Heavy equipment access into facility:
	☑ Allowed (no limitations)☐ Allowed (with limitations)☐ Not allowed
C.	Special Features:
	☐ Amended Soils☐ Porous Pavers☐ Liners☐ Underdrains

Photo 1: WQ biofiltration swale looking towards Cedar Hills Blvd. The swale is fairly deep as shown by the adjacent tall banks.

Photo 2: Access maintenance pad looking east.

- 3 -

Photo 1: Looking east at the water quality biofiltration swale.

5. Facility Haz Mat Spill Feature(s)

The water quality biofiltration swale can be used to store a volume of liquid by blocking the 12-inch diameter outlet pipe located at the outlet structure of the adjoining detention pond (DFI D00084). This pipe is noted as Point F on the Operational Plans.

6. Auxiliary Outlet (High Flow Bypass)

Auxiliary Outlets are provided if the primary outlet control structure can not safely pass the projected high flows. Broad-crested spillway weirs and over flow risers are the two most common auxiliary outlets used in stormwater treatment facility design. The auxiliary outlet feature is either a part of the facility or an additional storm drain feature/structure.

The auxiliary outlet feature for this facility is:

- □ Designed into facility

The split flow manhole is designed to bypass high flows. See split flow manhole detail provided on the Operational plan. High flows drain out the 18-inch pipe draining to the west (Point A).

7. Maintenance Requirements

Routine maintenance table for non-proprietary stormwater treatment and storage/detention facilities have been incorporated into ODOT's Maintenance Guide. These tables summarize the maintenance requirements for ponds, swales, filter strips, bioslopes, and detention tanks and vaults. Special maintenance requirements in addition to the routine requirements are noted below when applicable.

The ODOT Maintenance Guide can be viewed at the following website:

http://www.oregon.gov/ODOT/HWY/OOM/MGuide.shtml

Maintenance requirements for proprietary structures, such as underground water quality manholes and/or vaults with filter media are noted in Appendix C when applicable.

The following stormwater facility maintenance table (See ODOT Maintenance Guide) should be used to maintain the facility outlined in this Operation and Maintenance Manual or follow the Maintenance requirements outlined in Appendix C when proprietary structure is selected below:

□ I able 1 (general maintenance)
☐ Table 2 (stormwater ponds)
□ Table 3 (water quality or biofiltration swales)
☐ Table 4 (water quality filter strips)
☐ Table 5 (water quality bioslopes)
☐ Table 6 (detention tank)
☐ Table 7 (detention vault)
☐ Appendix C (proprietary structure)
☐ Special Maintenance requirements:
Note: Special maintenance Requirements Require Concurrence from
ODOT SR Hydraulics Engineer.

8. Waste Material Handling

Material removed from the facility is defined as waste by DEQ. Refer to the roadwaste section of the ODOT Maintenance Yard Environmental Management System (EMS) Policy and Procedures Manual for disposal options: http://egov.oregon.gov/ODOT/HWY/OOM/EMS.shtml

Contact any of the following for more detailed information about management of waste materials found on site:

ODOT Clean Water Unit	(503) 986-3008
ODOT Statewide Hazmat Coordinator	(503) 229-5129
ODOT Region Hazmat Coordinator	(503) 731-8304
ODEQ Northwest Region Office	(503) 229-5263

Appendix A

Content:

• Operational Plan and Profile Drawing(s)

SECTION C-C

 $\underset{\text{N.T.S.}}{\text{MODIFIED MANHOLE DETAIL AT POINT }} \bigoplus$

FLOW SPLITER DIVERSION MANHOLE AT POINT (A)

Prepared By:
Wynee Hu

Drafted By:
Rodney Schultz

DFI D00083
MAINTENANCE DISTRICT 2B HWY 047
WATER QUALITY BIOFILTRATION SWALE
SUNSET HIGHWAY MP 68.36 - 68.39
WASHINGTON COUNTY

TO OREGON DEPARTMENT OF TRANSPORTATION

Appendix B

Content:

- ODOT Project Plan Sheets
 - o Cover/Title Sheet
 - o Water Quality/Detention Plan Sheets
 - o Other Details

	INDEX OF SHEETS						
SHEET NO.	DESCRIPTION						
1	Title Sheet						
1A. 1A-2	Index Of Sheets Cont'd.						
1A-3	Std. Drg. Nos.						
1B	Sheet Layout						
2.2A.2A-2							
Thru	Typical Sections						
2A-65 Incl.							
2B, 2B-2							
Thru	Details						
2B-18 Incl.							
2C, 2C-2	Traffic Control Details						
2CA, 2CA-2,							
2CA-2A.	Traff's Control Plane Mark Asse						
2CA-3 Thru	Traffic Control Plans - Murray Work Area						
2CA-57 Incl.							
2CB, 2CB-2							
Thru	Traffic Control Plans - Cornell Work Area						
2CB-12 Incl.							
2D. 2D-2.							
Thru	Pipe Data Sheet						
2D-12. Incl.							

STATE OF OREGON DEPARTMENT OF TRANSPORTATION

PLANS FOR PROPOSED PROJECT

GRADING, DRAINAGE, STRUCTURES, PAVING, SIGNING, ILLUMINATION, SIGNALS, & ROADSIDE DEVELOPMENT

US26: CORNELL RD. - OR217 (BEAVERTON) SEC.

SUNSET HIGHWAY

WASHINGTON COUNTY MARCH 2004

Overall Length Of Project - 6.51 km (4.05 Miles)

ATTENTION:

Oregon Law Requires You to Follow Rules
Adopted By The Oregon Utility Notification
Center. Those Rules Are Set Forth in
OAR 952-001-0010 Through OAR 952-001-0090.
You May Obtain Copies Of The Rules By Calling
The Center. (Note: The Telephone Number For
The Oregon Utility Center Is (503) 232-1987.)

JA JA JA JA JA JA JA JA JA LET'S ALL JA WORK TOGETHER JA TO MAKE THIS JA JOB SAFE JA JA JA JA JA JA JA JA JA

OREGON TRANSPORTATION COMMISSION

Stuart Foster CHAIRMAN
Gail L. Achterman COMMISSIONER
Mike Nelson COMMISSIONER
Randall Papé COMMISSIONER
John Russell COMMISSIONER

Bruce A. Warner DIRECTOR OF TRANSPORTATION

Cotherine M. Nelson
TECHNICAL SERVICES MANAGING ENGINEER

US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY

FEDERAL HIGHWAY ADMINISTRATION	PROJECT NUMBER	SHEET NO.
OREGON DIVISION	NH-OTIA-S047(052)	1

141000 - H

- 1 Sta. "CBR" 95+770.98 To Sta. "CBR" 95+809.47. Lt. Const. Conc. Shidr. Barrier (Reflectorized) – 38.4 m Grout Barrier (Plug Scuppers) Flare Rate=0, W=0, E=0.6 m
- 2 Remove Extg. Curb Const. Mountable Curb & Gutter (For Details, See Sht. 2B-3) (See Drg. No. RD700)
- (3) Sta."CBR" 95+876.38 To Sta."CBR" 95+956.00, Rt.
 Const. Cast-In-Place Conc. Shidr. Barrier (Reflectorized) 84.4 m
 Flare Rate=20:1, W=0.61 m, E=0
 Protect Leading End W/Extg. Impact Attenuator
 (See Drg. No. RD505)
- (4) Sta."BR" 95+875.55 To Sta."BR" 95+898.83, Lt. Const. Conc. Shidr. Barrier (Reflectorized) -23.3 m Pin Barrier To Rdwy.
 Grout Barrier (Plug Scuppers)
 Flare Rate=0. W=0, E=0.6 m
 Const. Conc. Barrier Transition To Bridge Rail
- (5) Inst. Impact Attenuator Obstacle Width - 0.6 m Number Of Bays - 3 (For Details, See Sht. 2B-8)
- 6 Bridge No. 19808 Sta. "LW" 95+880.00 Const. Sign Truss And Footings (For Drg. Nos., See Sht. 1A-2)
- Bridge No. 9345
 Sta. "LW" 95+907.73 To Sta. "LW" 95+967.47
 Remove Extg. Bridge Rail
 Remove Extg. Asph. Conc. Surfacing
 Const. Bridge Rail
 Const. Structure
 Const. Structural Overlay
 Const. Reinf. Panel At Bridge End W/Bridge Rail 2
 (For Drg. Nos., See Sht. 1A)
- 8 Remove Extg. Curb
 Const. Low Profile Mountable Curb

- 9 Const. Type CL-6 Fence
- 10 See Sht. 16, Note 2 Const. Conc. Median Barrier
- (1) See Sht. 17. Note 19 Const. Single Slope Conc. Barrier
- 12) See Sht. 17, Note 5 Const. Conc. Shidr. Barrier
- (13) See Sht. 18E, Note 1 Const. Conc. Shidr. Barrier
- (14) See Sht. 14, Note 5 Const. Soundwall No. 515
- (5) Sta."CBR" 95+809.47 To Sta."CBR" 95+857.71, Lt.
 Const. Cast-In-Place Conc. Shldr. Barrier (Reflectorized) 46.5 m
 Flare Rate=20:1, W=2.3 m, E=0.6 m
 Const. Conc. Barrier Buried Terminal
 (For Details, See Sht. 2B-11)
 (See Dra. Nos. RD505 & RD510)
- (6) Remove Extg. Conc. Traffic Separator Const. Type "C" Traffic Separator (600 mm Width) With 300 mm Drain (See Drg. No. RD705)
- 17) See Sht. 16, Note 9
 Remove Extg. Conc. Barrier
- (18) Sta. "BR" 95+850.03, Rt. To Sta. "BR" 96+022.12, Lt. Remove Extg. Conc. Barrier 169 m
- (19) Sta. "LW" 96+012.92, Lt. To Sta. "LW" 96+197.56, Rt. Remove Extg. Conc. Barrier 185 m
- ② Sta. "LE" 95+861.18 To Sta. "LE" 95+907.42, Rt. Remove Extg. Guardrail 47 m
- (21) Sta. "LE" 95+861.48 To Sta. "LE" 95+907.50, Lt. Remove Extg. Guardrail 47 m

- 22 Sta. "CBR" 95+896.40 To Sta. "CBR" 95+954.31, Rt. Remove Extg. Guardrail 62 m
- 23 Sta. "LW" 95+967.85 To Sta. "LW" 95+013.73, Lt. Remove Extg. Guardrail 47 m
- ②4 Sta. "SC" 95+984.57 To Sta. "SC" 96+161.83. Lt. Remove Extg. Guardrail - 180 m
- 25 Remove Extg. Curb
- (26) Remove Extg. Conc. Traffic Separator
- (2) Sta."BR" 95+976.91 To Sta."BR" 95+989.29.Lt.
 Const. Conc. Shldr. Barrier (Reflectorized) 11.8 m
 Pin Barrier To Rdwy.
 Grout Barrier (Plug Scuppers)
 Flare Rate=0, W=0, E=0.6 m
 Const. Conc. Barrier Transition To Bridge Rail
- (28) Sta. "BR" 95+989.29 To Sta. "BR" 96+024.96, Lt. Const. Cast-In-Place Conc. Shidr. Barrier (Reflectorized) - 32.0 m Flare Rate=0. W=0. E=0.6 m
- (29) Sta."LE" 95+976.37 To Sta."LE" 96+195.29, Rt. Const. Conc. Shidr. Barrier (Reflectorized) - 218.9 m Grout Barrier (Plug Scuppers) Flare Rate=0, W=0, E=0 Const. Conc. Barrier Transition To Bridge Rail
- 30 Sta. "SC" 96+000.06 To Sta. "SC" 96+099.79, Lt. Const. Conc. Shldr. Barrier (Reflectorized) - 99.7 m Pin Barrier To Rdwy. Grout Barrier (Plug Scuppers) Flare Rate=0, W=0, E=0.6 m

- (3) Sta."LW" 95+811.13 To Sta."LW" 95+905.69, Rt.
 Const. Single Slope Conc. Barrier Mod. 94.6 m
 Connect To Mod. Median Barrier On Bridge Deck
 (For Details, See Shts. 2B-4, 2B-5, 2B-7, 2B-12 & Bridge Drgs.)
- 32) Sta. "LW" 95+967.74 To Sta. "LW" 96+200.44, Rt. Const. Single Slope Conc. Barrier (Reflectorized) - 232.8 m Flare Rate=0, W=0, E=0 Connect To Extg. Conc. Barrier (For Details, See Shts. 2B-4 & 2B-5)

OREGON DEPARTMENT OF TRANSPORTATION
ROADWAY ENGINEERING SECTION

US26: CORNELL RD. -OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

Design Team Leader - David Joe Polly Designed By - Danny Y, Hori Drafted By - Tien Nguyen

GENERAL CONSTRUCTION NOTES

- 1 Sta. "BR" 96+092.55, Lt.
 Remove Manhole
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-2MA" Inlet
 Inst. 300 mm Storm Sew. Pipe 19.0 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 49.5 m
 6 m Depth
 Const. Paved End Slope 4.6 m²
- 2 Sta. "SC" 96+049.10, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-1" Inlet 4
 Inst. 300 mm Storm Sew. Pipe 136 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 69.0 m
 6 m Depth
 Const. Paved End Slope 4
 9.6 m² (Total)
- 3 Sta. "BR" 96+030.25, Rt.
 Const. Manhole
 Const. Type "G-2" Open Graded HMAC Inlet 2
 Inst. 300 mm Storm Sew. Pipe 11.0 m
 1.5 m Depth
 Inst. 300 mm Storm Sew. Pipe 64.5 m
 3 m Depth
 Const. Wearing Surface Drain 32.0 m
 Const. Wearing Surface Drain Outlet 2
 (See Drg. No. RD314)
- 4 Sta. "LW" 96+041.03, Lt.
 Const. Manhole, Type Diversion, "High-Low"
 Inst. 300 mm Storm Sew. Pipe 34.0 m
 1.5 m Depth
 Const. Paved End Slope 2.4 m²
 (For Details, See Sht. GHJ-19)
- (5) Sta. "LW" 96+039.85. Lt.
 Const. Manhole, Type Pollution Control
 Const. Type "G-2" Open Graded HMAC Inlet 2
 Inst. 300 mm Storm Sew. Pipe 53.5 m
 1.5 m Depth
 (For Details, See Sht. GHJ-30)
- 6 Sta. "CBR" 95+936.03, Lt.
 Remove Inlet
 Adjust Inlet 2
 Const. Type "G-2" Inlet 2
 Inst. 300 mm Storm Sew. Pipe 6.5 m
 1.5 m Depth
 Inst. 300 mm Storm Sew. Pipe 9.0 m
 3 m Depth
- 7) Remove Inlet 6

- 8 Sta. "LE" 96+056.07, Rt.
 Remove Inlet
 Const. Type "G-2" Open Graded HMAC Inlet
 Remove Extg. Pipe 1.5 m
- 9 Sta. "LE" 95+783.23, Rt. Const. Type "G-2" Open Graded HMAC Inlet - 2 Inst. 300 mm Storm Sew. Pipe - 100.0 m 1.5 m Depth
- 10 Sta. "LW" 95+801.64, Lt.
 Const. Type "G-2" Inlet
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 111.5 m
 3 m Depth
 Rock Exc. 12 m³
- (1) Sta. "LW" 95+897.15, Lt.
 Const. Type "G-2" Inlet
 Const. Type "G-2" Open Graded HMAC Inlet
 Inst. 300 mm Storm Sew. Pipe 11.0 m
 3 m Depth
- (2) Sta. "D" 95+946.09.Rt.
 Const. Type "G-2" Open Graded HMAC Inlet
 Const. Type "G-2MA" Inlet
 Inlet F.L. 92.800
 Inst. 300 mm Storm Sew. Pipe 66.0 m
 1.5 m Depth
 Inst. 3 Piece Elbow 2
 Inst. Slip Joint
 Inst. Slope Anchor 6
 Connect To Extg.
 Const. Wearing Surface Drain 16.5 m
 Const. Wearing Surface Drain Outlet
 (For Details, See Sht. GHJ-4)
- (3) Sta. "D" 96+042.07. Rt.
 Const. Manhole, Type Diversion. "High-Low"
 Manhole Flow Line, See Sht. GHJ-18
 (For Details, See Sht. GHJ-18)
- (4) Sta. "D" 96+028.13, Rt.
 Const. Manhole, Type Pollution Control
 Inst. 300 mm Storm Sew. Pipe 33.5 m
 6 m Depth
 Manhole Flow Line 93.968
 Outfall Flow Line 93.600
 Const. Paved End Slope 2.4 m²
 (For Details, See Sht. GHJ-29)
- (5) Const. Water-Quality Swale "S1" (For Details, See Sht. GHJ-47)
- (6) Sta. "D" 95+984.89, Rt.
 Const. Manhole, Mod.
 Inst. 300 mm Storm Sew. Pipe 37.5 m
 1.5 m Depth
 Manhole Flow Line Match Extg. (93.194±)
 Outfall Flow Line 90.950
 Const. Paved End Slope 2.4 m²
 (For Details, See Sht. GHJ-6)

- (17) Sta. "BR" 96+250,48, L1. Remove Manhole Reconst. Manhole Const. Manhole, Large, 1800 mm Dia. Remove Inlet Const. Type "M-E" Inlet Const. Type "D" Detention Modified Inlet Const. Siphon Box Reconst. Inlet Remove Pipe - 15 m Inst. 450 mm Storm Sew. Pipe - 15.5 m 3 m Depth Inst. 525 mm Storm Sew. Pipe - 34.0 m 3 m Depth Connect To Exta. Const. Loose Riprap Blanket (Class 50) - 60 MG 8 m Wide x 8 m Long x 0.45 m Thick Around Inlets Riprap Geotextile, Type 2 - 80 m² Tr. Resurf. - 18 m² (For Details, See Shts. GHJ-5 & GHJ-6)
- (18) Regrade Detention Basin Clearing And Grubbing - 0.8 ha Gen. Exc. - 4500 m³ (For Details, See Sht. GHJ-44)
- (9) Sta. "BR" 96+115.61, Lt.
 Const. Loose Riprap Channel (Class 25) 240 MG
 Riprap Geotextile, Type 2 270 m²
 (For Details, See Sht. GHJ-8)
- (20) Sta. "BR" 96+110.69, Lt. Const. Loose Riprap Basin (Class 100) - 44 MG Riprap Geotextile, Type 2 - 60 m² (For Details, See Sht. GHJ-9)
- (2) Sta. "BR" 96+103.82, Lt. Const. Loose Riprap Channel (Class 350) - 26 MG Riprap Geotextile, Type 2 - 25 m² (For Details, See Sht. GHJ-8)
- (2) Sta. "SC" 96+034.54, Rt.
 Const. Loose Riprap Channel (Class 25) 22 MG
 Riprap Geotextile. Type 2 34 m²
 Dt. Exc. 14 m³
 (For Details, See Sht. GHJ-8)
- (23) Sta. "BR" 96+068.63, Rt. Const. Loose Riprap Channel (Class 25) - 130 MG Riprap Geotextile, Type 2 - 204 m² Dt. Exc. - 81 m³ (For Details, See Sht. GHJ-8)

- (4) Sta. "BR" 96+067.66, Rt. Const. Loose Riprap Basin (Class 25) - 2.5 MG Riprap Geotextile, Type 2 - 6.5 m² (For Details, See Sht. GHJ-9)
- (25) Const. Access Road
 Aggregate Base (75mm 0) 110 MG
 Subgrade Geotextile 191 m²
 (For Details, See Sht. GHJ-7)
- Esta. "ER" 95+804.38. Rt.
 Remove Manhole
 Const. Manhole, Large, 1500 mm Dia.
 Remove Inlet
 Remove Pipe 104.0 m
 Inst. 750 mm Storm Sew. Pipe 104.0 m
 6 m Depth
- (27) Sta. "ER" 95+908.02, Rt.
 Const. Manhole, Large, 1500 mm Dia.
 Const. Type "G-2" Inlet
 Remove Pipe 32.5 m
 Inst. 300 mm Storm Sew. Pipe 6.0 m
 3 m Depth
 Inst. 750 mm Storm Sew. Pipe 32.5 m
 6 m Depth
 Tr. Resurf. 32 m²
- 28 Sta. "ER" 95+940.44, Rt. Remove Manhole Const. Manhole, Large, 2400 mm Dia. Connect To Extg. - 6
- (29) Sta. "D" 96+036.93. Rt.
 Const. Manhole
 Inst. 300 mm Storm Sew. Pipe 9.5 m.
 3 m Depth
 Manhole Flow Line 94.100 W., 95.542 E.
- Sta. "CBR" 95+773.05 To Sta. "CBR" 95+857.74, Lt.
 Const. Conc. Barrier Drain 83.0 m
 Drain To Gutter
 Emb. In Place 40 m³
 (For Details, See Sht. GHJ-1)

OREGON DEPARTMENT OF TRANSPORTATION
ROADWAY ENGINEERING SECTION

US26: CORNELL RD. -OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

Design Team Leader - Eileen J. Phelan Designed By - Henry M. Allen Drafted By - Tien Nguyen

DRAINAGE & UTILITIES NOTES

SHEET NO.

18D

Design Team Leader - Eileen J. Phelan Designed By - Henry M. Allen Drafted By - Tien Nguyen

DRAINAGE & UTILITIES

- (1) Sta. "LW" 96+062.17, Lt. Const. Manhole, Type Diversion. "Low-Low"
 Const. Type "G-1" Inlet Inst. 300 mm Storm Sew. Pipe - 85.0 m 1.5 m Depth Const. Paved End Slope - 2 $4.8 m^2 (Total)$ (For Details, See Sht. GHJ-21)
- (2) Const. Water-Quality Swales "N1. N2. N3. N4. N5" - 5 (For Details, See Sht. GHJ-45)
- (3) See Sht. 18B-2, Note 5
- (4) Sta. "SC" 96+117.78, Rt. Const. Manhole, Large, 1500 mm Dia. Const. Type "G-2" Inlet - 6 Inst. 300 mm Storm Sew. Pipe - 99.5 m 1.5 m Depth Inst. 300 mm Storm Sew. Pipe - 43.0 m 6 m Depth Inst. 750 mm Storm Sew, Pipe - 31.0 m 6 m Depth
- (5) Sta. "LW" 96+118.96, Lt. Const. Manhole, Type Diversion, "Low-Low" Const. Type "G-1" Inlet Inst. 300 mm Storm Sew. Pipe - 56.0 m 1.5 m Depth Const. Paved End Slopes - 2 4.8 m² (Total) (For Details, See Sht. GHJ-21)
- (6) Sta. "NW" 96+122.99, Lt. Const. Manhole. Type Diversion. "Low-Low" Inst. 450 mm Storm Sew. Pipe - 5.0 m 1.5 m Depth (For Details, See Sht. GHJ-21)
- (7) Sta."NW" 96+127.81.Lt. Const. Manhole, Type Pollution Control Inst. 450 mm Storm Sew. Pipe - 11.0 m 1.5 m Depth (For Details, See Sht. GHJ-30)
- (8) Sta. "NW" 96+138.32, Lt. Const. Manhole, Type Diversion, "High-Low" Inst. 750 mm Storm Sew. Pipe - 5.0 m 3 m Depth (For Details, See Sht. GHJ-19)

- (9) Sta. "NW" 96+143.24. Lt. Const. Manhole, Large, 1500 mm Dia. Const. Type "G-2" Open Graded HMAC Inlet Inst. 300 mm Storm Sew. Pipe - 4.0 m 1.5 m Depth Inst. 600 mm Storm Sew. Pipe - 29.5 m 3 m Depth
- (10) Sta. "NW" 96+172.69, Lt. Const. Manhole, Shallow Const. Type "G-2" Open Graded HMAC Inlet Inst. 300 mm Storm Sew. Pipe - 4.0 m 1.5 m Denth Inst. 600 mm Storm Sew. Pipe - 64.0 m 6 m Depth
- (11) Sta. "LW" 96+234.77. L1. Const. Manhole Const. Type "G-2" Open Graded HMAC Inlet - 3 Const. Type "G-2MA" Inlet Inst. 300 mm Storm Sew. Pipe - 17.0 m 1.5 m Depth Inst. 300 mm Storm Sew. Pipe - 21.0 m 3 m Depth Inst. 600 mm Storm Sew. Pipe - 96.5 m 6 m Depth
- (12) Sta. "LW" 96+330.89, Lt. Const. Manhole Const. Type "G-2" Open Graded HMAC Inlet Inst. 300 mm Storm Sew. Pipe - 3.5 m 3 m Depth Inst. 600 mm Storm Sew. Pipe - 47.0 m 6 m Depth
- (13) Remove Inlets 4 Remove Manholes - 3
- (14) Sta. "LE" 96+179.11, Rt. Remove Inlet Const. Type "G-2" Open Graded HMAC Inlet Remove Exta. Pipe - 1.0 m
- (15) Sta. "LE" 96+283.60, Rt. Remove Inlet Const. Type "G-2" Open Graded HMAC Inlet Remove Extg. Pipe - 0.5 m

- (16) See Sht. 18B-2. Note 2
- (17) Sta. "NW" 96+098.56, Lt. Const. Loose Riprap Channel (Class 25) - 16 MG Riprap Geotextile, Type 2 - 24 m² For Details, See Sht. GHJ-8)
- (18) Sta. "SC" 96+057.96, Rt. Inst. 300 mm Storm Sew. Pipe - 8.5 m 1.5 m Depth Const. Payed End Slopes - 2 4.8 m² (Total)
- (19) Sta. "SC" 96+067.55, Rt. Const. Loose Riprap Basin (Class 25) - 2.5 MG Riprap Geotextile, Type 2 - 6.5 m² (For Details, See Sht. GHJ-9)
- (20) Sta. "SC" 96+145.00 To Sta. "SC" 96+269.00. Lt. Const. Conc. Barrier Drain - 121.5 m Drain To Inlet +170.00 Emb. In Place - 290 m3 (For Details, See Sht. GHJ-1)

OREGON DEPARTMENT OF TRANSPORTATION ROADWAY ENGINEERING SECTION

US26: CORNELL RD. -OR217 (BEAVERTON) SEC. SUNSET HIGHWAY

WASHINGTON COUNTY

Design Team Leader - Eileen J. Phelan Designed By - Henry M. Allen Drafted By - Tien Nauyen

DRAINAGE & UTILITIES NOTES

Note: For Details Not Shown, See RD364 & RD376

Outflow

Outflow

22.2 mm Diam.
Resin-Bonded Anchors
With Washers And
Nuts. Typ.

Waterproof Seal Edges, Typ.

SECTION B-B

Note:
For Details Not Shown, See Sht. GHJ-20

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.

OREGON DEPARTMENT OF TRANSPORTATION GEO/HYDRO SECTION

US26: CORNELL RD. -OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

Project Leader - Noveen Chandra Designed By - Henry M. Allen Drafted By - Martin G. Casillas

WATER QUALITY DETAILS

GHJ-6

SHEET NO.

THE FILE NAME LUCATION NSCROOLVANDEDSCRIETI LIA

For Details Not Shown, See Sht. GHJ-20
DIVERSION MANHOLE "HIGH-LOW" LOW FLOW STRAIGHT THROUGH
Sta. "CBR"95+523, Lt.

SECTION B-B

PLAN

For Details Not Shown, See Sht. GHJ-20
DIVERSION MANHOLE "HIGH-LOW", LOW FLOW TO SIDE

Sta. "D"96+042, Rt.

SECTION B-B

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.

GEO / HYDRO SECTION								
US26: CORNELL RD OR217 (BEAVERTON) SEC SUNSET HIGHWAY WASHINGTON COUNTY	•							

Project Leader - Noveen Chandra

Designed By - Henry M. Allen

Orafted By - Martin G. Casillas

WATER QUALITY DETAILS

GHJ-18

WATER QUALITY DETAILS

WATER QUALITY SWALES SITE SPECIFIC INFORMATION

Notes:
1) U-S= Upstream, D-S= Downstream
2) See Site Plans For Pipe Inverts At Inlets.
3) "C-T Blend" = Compost-Topsoil Blend,
"Rock+C-T" = Drain Rock With Compost-Topsoil Blend.

	L,	W,	F.L. U-S,	F.L. D-S,	Long. Slope,	Centerline Curve Radius,		Swale Side	eslopes		Freeboard Depth,	Swale Bottom	No. Under- Drain	Under Drain Tie-In	Swale Outlet
Swale ID	m	m	m	m	%	m	U-S	Left	Right	D-S	m	Medium	Segments	Location	Facility
WCW	340	1.2	See GHJ-32	See GHJ-32	Varies	None	1:3	1:4	1:6	1:4	0.3	Rock+C-T	2	"G-2MA" Mod. Inlet	"G-2MA" Mod. Inlet
WCE	322	2.4	See GHJ-33	See GHJ-33	Varies	None	1:20	1:6	1:4	1:18	0.3	Rock+C-T	2	"G-2MA" Mod. Inlet	"G-2MA" Mod. Inlet
WC1	82	2.4	68.062	66.543	1.85	None	1:4	1:3	1:6	1:4	0.3	C-T Blend	2	"D" Mod. Inlet	"M-E" Mod. Inlet
WC2A	30	0.6	70.673	70.197	1.50	None	1:2	1:2	1:2	1:2	0.3	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2B	474	0.7	70.815	70.637	0.32	None	1:3	1:3	1:3	1:3	0.3	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2C	37	0.8	71.042	70.839	0.55	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	1	"D" Mod. Inlet	"D" Mod. Inlet
WC2D	41	0.9	72.556	71.634	Varies	None	1:5	1:5	1:5	1:5	0.3	Rock+C-T	11	"D" Mod. Inlet	"D" Mod. Inlet
WC3A	50	2.4	70.195	69.961	0.5	None	1:4	Var.	Var.	1:4	.8	C-T Blend	2	"D" Mod. Inlet	"V"-Bottom Ditch
WC3B	50	2.4	74.408	74.158	0.5	80	1:4	1:4	1:6	1:4	0.45	C-T Blend	2	"D" Mod. Inlet	"M-E" Mod. Inlet
MA1	31.5	2.4	72.160	72.000	0.51	None	1:3	1:3	Var.	1:6	0.45	C-T Blend	None	N.A.	"M-E" Mod. Inlet
CBR	See GHJ-43	2.4	See GHJ-43	See GHJ-43	Varies	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	"D" Inlet
<u>N1a</u>	23	2.4	102.150	102.035	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A	Riprap Basin
N1b	12.3	2.4	101.812	101.750	0.5	25	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel
N2	36	2.4	102.750	102.570	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N3	36	2.4	103.350	103.170	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N4	36	2.4	103.850	103.670	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
N5a	12.6	2.4	104.404	104.341	0.5	None	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel
N5b	24	2.4	104.150	104.030	0.5	100	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Pipe
S1	36	2.4	93.550	93.370	0.5	20, Each	1:4	1:4	1:4	1:4	0.45	C-T Blend	None	N.A.	Channel

All Dimensions Are In Millimeters (mm) Unless Otherwise Noted.

OREGON DEPARTMENT OF TRANSPORTATION GEO / HYDRO SECTION

US26: CORNELL RD. OR217 (BEAVERTON) SEC.
SUNSET HIGHWAY
WASHINGTON COUNTY

Project Leader - Naveen Chandra Designed By - Henry M. Allen Drafted By - Martin G. Casillas

WATER QUALITY DETAILS

Left Side Right Side Water Quality Swale Limits Width Varies Swale Depth

> Min. Swale Length - 33 m Min. (Max.) Longitudinal Swale Slope - .005 (0.5%) Min. Swale Depth - 0.45 m

VEGETATED STORM WATER QUALITY SWALE

Detail Shown For Reference Only. Design By H. Allen (ODOT).

- 1) Provide And Install Jute Mat Per Specifications.
- Provide And Place 150 mm Deep Topsoil Throughout Swale.
- 3 Swale Bottom Medium Provide And Place 450 mm Deep Medium In Bottom Of Swale, Continuous Full Length Of Swale.

 Medium Composed Of Compost-Topsoil Blend Or Drain Rock With Compost-Topsoil Blend.
- Seed Swale Using Mix No. 4. See Specifications.
- Under Drains, Where Recommended By The Engineer. Contact Henry Allen 503-731-8299.
- (7) For Details Not Shown, See Water-Quality Swale Details In GHJ Series Sheets.

STREAM BANK LOG WITH ROOT WAD

Recruit Log With Root Wad From Conifer Material Within Project Clearing Limits. See Specs.

The Log Must Be Anchored And/Or Ballasted To Maintain Design Placement. Details Of The Anchoring And/Or Ballast Will Be Provided By The Engineer At The Time Of Installation.

OREGON DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL SECTION

US26: CORNELL RD. - OR217 (BEAVERTON) SEC. SUNSET HIGHWAY WASHINGTON COUNTY

> Reviewed By ~ Mark A. Hadley Designed By - Mike D. Smyth Drafted By - Tammy J. Taggart

BIC-STABILIZATION DETAILS

R28

(4) Not Used